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SUMMARY

Propionic acid (PA) is a bacterium-derived intestinal
antimicrobial and immune modulator used widely in
food production and agriculture. Passage of Crohn’s
disease-associated adherent-invasive Escherichia
coli (AIEC) through a murine model, in which intesti-
nal PA levels are increased tomimic the human intes-
tine, leads to the recovery of AIEC with significantly
increased virulence. Similar phenotypic changes
are observed outside the murine model when AIEC
is grown in culture with PA as the sole carbon source;
such PA exposure also results in AIEC that persists at
20-fold higher levels in vivo. RNA sequencing iden-
tifies an upregulation of genes involved in biofilm
formation, stress response, metabolism, membrane
integrity, and alternative carbon source utilization.
PA exposure also increases virulence in a number
of E. coli isolates from Crohn’s disease patients.
Removal of PA is sufficient to reverse these pheno-
typic changes. Our data indicate that exposure to
PA results in AIEC resistance and increased virulence
in its presence.

INTRODUCTION

Short chain fatty acids (SCFAs) are naturally produced by gut

bacteria through the breakdown of undigested carbohydrates

and starches. This process results in the production of acetic

acid (AA), butyric acid (BA), and propionic acid (PA), which

together account for approximately 90% of intestinal SCFAs.

PA has attracted significant interest due to its potent immuno-
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modulatory effects, with its supplementation shown to reduce

the severity of colitis inmurinemodels, suggesting itsmodulation

has potential as a therapeutic intervention in inflammatory bowel

disease (Tedelind et al., 2007; Smith et al., 2013). Crohn’s dis-

ease (CD) is a debilitating and incurable inflammatory disease

of a multi-factorial etiology. The mechanisms underlying the dis-

ease are not fully understood; however, it is thought that defects

in the immune response to the gut microbiota are a contributing

factor (Hansen et al., 2010; Molodecky et al., 2011; Jostins et al.,

2012; Mukhopadhya et al., 2012; Imhann et al., 2016; Keestra-

Gounder et al., 2016). Sudden changes in diet have been shown

to result in rapid changes in the gut microbiota (Turnbaugh et al.,

2009; Martinez-Medina et al., 2014; Agus et al., 2016), whereas

the inflammation associated with CD results in markedly

decreased microbial diversity (Tamboli et al., 2004; Gophna

et al., 2006; Frank et al., 2011). Levels of Enterobacteriaceae in

particular are higher in intestinal samples from CD patients

than in healthy controls (Willing et al., 2009; Morgan et al.,

2012; Mukhopadhya et al., 2012; Honneffer et al., 2014). One

group of Enterobacteriaceae that is of particular interest is the

Escherichia coli pathotype adherent-invasive E. coli (AIEC).

These bacteria are overrepresented in the ileal microbiota of

CD patients, being present in 51.9% of mucosal samples from

CD patients compared with 16.7% in healthy controls (Marti-

nez-Medina et al., 2009). Key features of the AIEC pathotype

that distinguish them from non-invasive commensal strains

include adherence to and invasion of the intestinal epithelium,

an increased ability to form biofilms, and the ability to survive

and replicate within macrophages without inducing cell death

(Martinez-Medina et al., 2009). Although AIEC strains are similar

to extra-intestinal pathogenic E. coli (ExPEC) in terms of phylo-

genetic origin and genotype, they have few known virulence

factors (Palmela et al., 2018). This apparent lack of virulence

factors and the discovery of AIEC strains across all five major
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Figure 1. Supplementation of the Murine In-

testine with PA Raises the PA Concentration,

and Infection of This Model with AIEC

Increases the Virulent Phenotype of the

Bacterium

(A) The ratio of acetate:propionate:butyrate in mu-

rine samples was calculated from the isolated

caecal contents of an uninfected control mouse that

was mock infected with PBS in place of bacteria,

3 days post-treatment with exogenous PA added to

the drinking water. This was compared to published

human SCFA ratios (Cummings et al., 1987).

(B and C) AIEC type strain LF82 modified to contain the luciferase and erythromycin cassette (LF82lux) was recovered frommice that had been given water (�PA)

or water supplemented with 20 mM propionic acid (+PA). Subsequently, adhesion to Caco-2 intestinal epithelial cells (B) and ability to form biofilms in RPMI with

3% fetal calf serum (FCS) (C) were assessed. In vitro/vivo refers to where the strains were generated. Results displayed are the average of at least three in-

dependent biological replicates ± SD. Samples were analyzed using an un-paired non-parametric t test (A) or one-way ANOVA with Holm-Sidak’s multiple

comparisons post-test (B and C; *p < 0.05; **p < 0.01).
diverse phylogroups of E. colimean that an overarching explana-

tion for the origin and virulence of AIEC has remained out of

reach.

PA is manufactured on an industrial scale and is now

commonly used in agriculture because, in addition to its anti-in-

flammatory effects, it is a potent antimicrobial. PA has demon-

strated success in reducing pathogen numbers in poultry, partic-

ularly in reducing Salmonella and Campylobacter carriage

(Hinton and Linton, 1988; Iba and Berchieri, 1995; Hung et al.,

2013; González-Fandos et al., 2015). PA is also an effective

antimicrobial agent used in Western food production and

agriculture, reducing the need for antibiotic use amidst growing

antibiotic resistance concerns (Defoirdt et al., 2009; Haque et al.,

2012; Khan and Iqbal, 2016). Inclusion in animal feed, grain, and

food for human consumption accounted for almost 80% of PA

consumption across the world in 2016, with Western Europe

(40% of total use), North America (30%), and Asia (23%) as the

main consumers (Bizzari and Blagoev, 2013). The success of

SCFAs in reducing antibiotic dependence is now seeing their

use spread to countries across Africa, the Middle East, and

Central and South America (Bizzari andBlagoev, 2013). Although

there is increasing evidence for antibiotic-driven enhanced

genome-wide mutation rates and horizontal transmission of

bacteria from food-producing animals to humans (Levy et al.,

1976; Ojeniyi, 1989; Long et al., 2016; Ljubojevic et al., 2017),

the role of alternative antimicrobials such as PA in such phe-

nomena has yet to be addressed (Frana et al., 2013; Lazarus

et al., 2015; Norizuki et al., 2017). Indeed, using animal models

for human disease where SCFAs may play an important role

has proven difficult at best. Murine models for human pathogens

are limited by distinct differences in basal levels of SCFAs

between the murine and human intestines, with murine levels

significantly lower in the case of PA (Cummings et al., 1987).

However, the significance of such differences in influencing the

outcome or course of disease is not known but could be

substantial.

In this study, we show that PA exposure promotes increased

virulence in AIEC. Using a murine model with increased intesti-

nal PA concentrations, we have generated a more relevant

model for human-gut-associated AIEC infection, resulting in

increased AIEC virulence and persistence. This increased viru-

lence is PA dependent and can be replicated in vitro by expo-
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sure of AIEC to PA alone. RNA sequencing (RNA-seq) identified

the transcriptional changes driving these changes in virulence,

which were determined to be reversible if PA was removed.

Our data highlight the potential risks of widespread PA use

as an antimicrobial. An understanding of the AIEC phenotype

by using genetic markers or phenotypic characteristics has

remained elusive; however, our findings indicate that PA

metabolism is a crucial driver of the AIEC phenotype.

RESULTS

Humanizing the Murine Intestinal PA Concentration
Exacerbates the AIEC Phenotype
Although the concentration of PA in the human intestine ranges

from 1.5 mM in the ileum to 27mM in the colon, it is considerably

lower in the murine intestine (Cummings et al., 1987; Hung et al.,

2013). Additionally, the ratios of SCFAs differ greatly (Figure 1A;

human AA:PA:BA ratios, 60:20:20; murine ratios, �85:7:8). To

address this in our in vivo infection model, we supplemented

the drinking water of male C57BL6 mice with 20 mM PA. Caecal

SCFA levels post-PA supplementation indicated that the

relative amount of PA had significantly increased, whereas no

significant changes were seen in the relative abundances of

either AA or BA (Figure S1; AA:PA:BA ratios without PA, 85:7:8;

with PA, 79:12:9). We examined the effect that increased

murine intestinal PA levels had on the virulence of the AIEC

strain LF82. Mice fed PA-supplemented drinking water for

3 days prior to infection and for the duration of the infection

were infected with LF82, alongside control mice that were

given only sterile drinking water. Twenty-one days post-infec-

tion, LF82 was recovered from the ileum and colon of infected

mice. Key phenotypic features that distinguish the AIEC

pathotype, adherence to and invasion of the intestinal epithe-

lium, and the ability to form biofilms were then examined

(Martinez-Medina et al., 2009). Adhesion to the Caco-2 human

intestinal epithelial cell line by LF82 recovered from PA-fed

mice was 16-fold higher than wild-type (WT) LF82, whereas no

significant change in adhesion was seen in LF82 recovered

from mice not fed PA (Figure 1B). There was no significant

difference in invasion of LF82 from PA-fed mice (Figure S2;

fold change, >5.25). Examination of biofilm formation by LF82

post-in vivo infection revealed that anaerobic biofilm formation



Figure 2. LF82 Utilizes PA as a Sole Carbon

Source for Growth, and Exposure to PA In-

creases Virulence

(A) LF82 and commensal E. coli strain F-18 were

grown in minimal media supplemented with 20 mM

PA over a series of five successive re-cultures.

Growth rate of the PA-exposed strains, termed

LF82-PA and F-18-PA, were subsequently

compared to WT controls.

(B) The growth rates of LF82, F-18, LF82-PA, and

F-18-PA were unchanged in rich LB broth.

(C and D) The ability of LF82 and LF82-PA strains to

adhere to (C) and invade (D) Caco-2 intestinal

epithelial cells was determined. Biofilm formation

over 7 days of anaerobic growth was assessed in the

presence of 20 mM PA (D).

(E) The ability of LF82 and LF82-PA to tolerate acidic

pH (pH 3) over time was determined by colony

counts (E).

Results displayed are the average of at least three

independent biological replicates ± SD. Samples

were analyzed using an unpaired t test where *p <

0.05 and **p < 0.01 (C–F).
was dramatically increased in LF82 recovered from mice fed PA

relative to the WT strain, whereas there was no significant differ-

ence between LF82 recovered from control non-PA-fed mice

and the WT strain (Figure 1C).

The Enhanced AIEC Phenotype Was Driven by PA
We hypothesized that the enhanced virulence of LF82 was

driven by the increased murine intestinal PA concentration and

was independent of other factors during in vivo infection. To

examine this, LF82 was grown in minimal media with PA as the

solecarbonsource (20mM).LF82wasable togrow inPA,whereas

ahumancommensalE.colistrain includedasacontrol,E.coliF-18

(Ormsbyet al., 2016), replicatedextremely poorly (Figure2A). Sub-

culturing the bacteria over five growth cycles in PA-supplemented

minimal media generated a ‘‘PA-exposed’’ strain of LF82, termed

LF82-PA. LF82-PAhad a significantly increased growth ratewith a

doubling timeof 3.98 h inPAcompared toWTLF82at 25.59h (Fig-

ure 2A). This increased growth ratewas specific toPAandwas not

observed in nutrient-rich broth (lysogeny broth [LB]; Figure 2B).

These results are surprisinggiven thewell-documentedantimicro-

bial properties of PA (Hinton and Linton, 1988; Iba and Berchieri,

1995; Hung et al., 2013; González-Fandos et al., 2015).
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The effect on virulence of this in vitro

exposure to PA was examined. LF82-

PA showed a significant 1.58-fold in-

crease in adherence to Caco-2 human in-

testinal epithelial cells compared to LF82

(Figure 2C). Additionally, significantly

increased invasion (Figure 2D; 3.38-fold

increase) and anaerobic biofilm formation

(Figure 2E; 1.34-fold increase) by LF82-

PA was observed compared to LF82. PA

exposure had no significant effect on

the intracellular replication of LF82

(Figure S3).
Direct incorporation of PA into the membrane is a mechanism

used by bacteria to minimize the toxic effects of excess PA in the

environment (Jain et al., 2007; Lee et al., 2013; Si et al., 2016).

Given that the phenotypic changes seen in AIEC, such as

increased adhesion, were likely to be mediated by changes in

the composition of the bacterial membrane following growth

on PA, we investigated this further. Gas chromatography

coupled to isotope ratio mass spectrometry (GC-IRMS) using
13C-labeled PA (1-13C sodium propionate) revealed that PA

was not incorporated into odd chain long chain fatty acids

(LCFAs). However, there was significant 13C-enrichment in 12

fatty acid methyl esters (FAMEs) that did not correspond to

any of the 37 FAMEs in our reference standard. The proximity

of these labeled peaks to known LCFAs is likely indicative of

incorporation of PA into methylated or branched chain fatty

acids (BCFAs), as described previously during Mycobacterium

tuberculosis growth on, and detoxification of, PA (Lee et al.,

2013). Therefore, this indicated that LF82 could both metabolize

and detoxify an antimicrobial that exerts potent toxic effects on a

number of other intestinal pathogens (Hinton and Linton, 1988;

Iba and Berchieri, 1995; Hung et al., 2013; González-Fandos

et al., 2015).
orts 30, 2297–2305, February 18, 2020 2299



Figure 3. The Enhanced Fitness and Viru-

lence of the AIEC-PA Phenotype Can Be

Reversed

AIEC type strain, LF82, and clinical isolates B94,

B115, B122, and B125 were repeatedly cultured in

minimal media with 20 mM PA as the sole carbon

source. These isolates were then continuously re-

cultured (5 passages) in LB, generating a reverted

strain (termed Isolate-PA-LB). Adhesion (A) and in-

vasion (B) to Caco-2 intestinal epithelial cells were

examined. Data displayed are of two independent

experimental replicates, with each experiment

including three independent biological replicates.

Adherence and invasion data are expressed asmean

± SD; data were analyzed using a one-way ANOVA

with Tukey post-test correction (*p < 0.05; **p < 0.01).
The observed changes in the bacterial membrane also

rendered LF82-PA increasingly acid tolerant despite exposure

in PA-supplemented minimal media being carried out at pH 7.4

(Figure 2F). A reduction in cell number was seen for both LF82

and LF82-PA at a pH of 3, but the LF82-PA strain survived in

greater numbers for longer periods (at 20 min, LF82-PA was

recovered in numbers >30.4-fold higher than LF82; at 40 min,

LF82-PAwas >22.7-fold higher). Taken collectively, these results

indicate that the increased virulence observed after passage

of LF82 through a PA-supplemented murine model can be repli-

cated by exposure to PA in vitro.

The Enhanced Virulence Phenotype of LF82-PA Is Not
Genome Encoded and Is Reversible
Genome sequencing of three biological replicates of LF82-PA,

exposed independently in vitro to PA, revealed a number of

single nucleotide polymorphisms (SNPs; Data S1, nucleotide

analysis of PA-exposed LF82-PA, related to Figure 2). However,

no SNPs were conserved across all isolates. Detailed analysis

of the genes and pathways in which the SNPs were identified

did not lead to the identification of any candidate pathways

that may explain the changes in virulence observed. However,

we cannot exclude the possibility that different combinations of

small genomic changes may result in the same outcome at the

transcriptional level. As the virulent phenotype persists over a

number of generations and was not explained by genetic anal-

ysis, we hypothesized that the phenotype we see may be as a

result of an epigenetic switch in LF82-PA. A long-term epigenetic

memory switch with a role in controlling bacterial virulence bimo-

dality was recently identified in enteropathogenic E. coli (EPEC)

(Ronin et al., 2017). This ‘‘resettable phenotypic switch’’ results

in populations of virulent and hypervirulent genetically identical

subpopulations that are retained through generations. To further

examine this possibility, LF82-PA was passaged through rich

(LB) media with no PA-selective pressure. After five successive

subcultures, this strain (LF82-PA-LB) had lost its increased

growth rate in PA, and its virulence phenotype reverted to be

more similar to that of WT LF82 (Figure 3). The epigenetic nature

of this change was further confirmed through sequencing of

the reverted LF82-PA-LB strains, which indicated that the

SNPs present in the original LF82-PA strains were conserved

and that the changes induced by PA were not due to SNPs or

mutations (Data S1).
2300 Cell Reports 30, 2297–2305, February 18, 2020
The PA-Driven Enhanced AIEC Phenotype Is Seen in
Other Clinical AIEC Isolates
E. coli isolated from intestinal samples of pediatric patients with

active CD was compared to LF82 for its ability to adhere to and

invade an intestinal epithelial cell line before and after exposure

to PA (Figure 3). All isolates exhibited an AIEC phenotype with an

ability to adhere to and invade intestinal epithelial cells (Ormsby

et al., 2019). Although there was an increase in the ability of all

isolates to adhere to intestinal epithelial cells after PA exposure,

this was only significant for clinical isolates B115 and B125 (Fig-

ure 3A). A similar increase was observed for invasion (Figure 3B).

However, the phenotype was reversible in the same manner as

previously for LF82 through removal of the PA pressure. Isolates

were grown in rich media containing no PA for five successive

growth cycles before re-examination of their ability to adhere

to and invade intestinal epithelial cells, with all strains examined

returning to WT levels of adhesion and invasion (Figure 3). These

data indicated that PA-induced exacerbation of the AIEC pheno-

type occurred more widely in AIEC isolated from CD patients.

Enhanced LF82-PA Virulence Is Driven by
Transcriptional Changes
Given that no definitive mutational basis for the observed in-

crease in virulence was detected through genome analysis, we

used a comparative RNA-seq approach to probe the global

transcriptional profiles of LF82 and LF82-PA grown on PA.

RNA-seq revealed 25 differentially expressed genes (DEGs; p

% 0.05) between LF82 and LF82-PA (Figure 4; Table S2); 24

were upregulated in the LF82-PA strain and 1 (mcbR; �20.85-

fold) was downregulated. Of the 25 DEGs identified by RNA-

seq, 21 including mcbR, were validated as significantly altered

by PA using qRT-PCR (Figure S4). Functional grouping of

these 21 DEGs revealed their roles in diverse processes,

including biofilm formation, stress responses, metabolism,

membrane integrity, and transport of alternative carbon

sources (Figure 4; Table S1). Eight DEGs have well-described

roles in biofilm formation, further adding to our in vitro

findings indicating that PA was a driver of adhesion and biofilm

formation (Figures 2C and 2E). Upregulation of another DEG, a

regulator of membrane fatty acid composition yibT, adds

further evidence for the potential detoxification of PA through

membrane incorporation, as previously described (Lee et al.,

2013; Si et al., 2016). Therefore RNA-seq analysis indicates



Figure 4. Global Transcriptional Shifts of LF82-PA

(A) Volcano plot illustration of gene expression between LF82 and LF82-PA, as determined byRNA-seq. Significance (Log10 p value) and fold change cutoffs (log2)

are indicated by the dashed and solid lines, respectively.

(B) Significantly differentially expressed genes (DEGs) are numbered and highlighted in green (upregulated in LF82-PA) and red (downregulated).

(C) Genes corresponding to ribosomal RNA coding regions were not labeled for clarity. Bar chart highlighting the fold changes in expression of the identified

DEGs. Each gene is numbered and corresponds to the volcano plot. DEGs are grouped into functional categories.
that PA drives changes in virulence that are fundamental to the

AIEC pathotype.

Exposure to PA In Vitro Significantly Increases
Persistence of LF82 In Vivo

Given our findings of PA-driven changes in virulence, we deter-

mined the effect of PA exposure on long-term persistence of

LF82-PA in vivo. Mice were again provided PA-supplemented

(20 mM) water for 3 days prior to infection and for the 21-day

duration of the infection. Mice given only sterile drinking water

and infected with LF82 or LF82-PA or those treated with phos-

phate-buffered saline (PBS) were included as controls. In PA-

fed mice, the colonization of LF82 was not significantly altered

in either the ileum or colon compared to control mice (Figures

5A and 5B). However, LF82-PA was found to persist with a

greater than 20-fold increase in the ileum and a greater

than 18-fold increase in the colon in these mice compared to

controls (Figures 5C and 5D). No significant difference in the

persistence of either strain was observed in the caecum, irre-

spective of the presence of PA (Figure S5). These data indicate

that PA-exposed strains retain virulence when transferred to a

new model host, most likely through having an increased

nutritional advantage as well as an increased ability to adhere

to and invade intestinal cells and form biofilms.

Exposure to PA In Vivo Gives LF82 a Competitive
Advantage In Vivo

As exposing LF82 to PA in vivo resulted in strains with an

increased ability to adhere to and invade intestinal epithelial cells

and form biofilms in vitro (Figures 1B and 1C), we examined the

capacity of these strains to outcompete LF82 that had not

been exposed to increased PA. LF82 and LF82lux were used

to infect mice supplemented with either PA or sterile drinking

water, before being recovered. A competiton assay using equal

mixtures of these re-isolated strains was then conducted in

two subgroups of mice: one whose diet was supplemented

with PA and a second whose diet was not. Our data indicated
that LF82 recovered from a primary PA (PA1�)-fed mouse out-

competed bacteria from a primary water (W1�)-fed mouse in sub-

sequent infections of both PA and water-fed secondary mice

(PA2� and W2�, respectively) (Figure 6). PA1�-recovered bacteria

outcompeted W1�-recovered bacteria in the ileum (competitive

index [CI] = 2.91; p = 0.0078) and colon (CI = 1.91; p = 0.0156)

of a PA2�-fed mouse. In a W2� mouse, PA1�-recovered bacteria

outcompeted W1�-recovered bacteria in the ileum (CI = 2.07;

p = 0.0938) and colon (CI = 2.75; p = 0.125).

DISCUSSION

SCFAs have significant effects on their hosts and are seen as

key players in how the intestinal microbiome maintains health,

modulates the immune system, controls invading pathogens,

and even exerts effects on distal sites such as the brain (Smith

et al., 2013; Jacobson et al., 2018; van de Wouw et al., 2018).

Such positive effects have led to the suggested use of SCFAs

as a therapeutic intervention strategy in inflammatory diseases,

including inflammatory bowel disease (Tedelind et al., 2007).

Here, however, we have shown a role for the SCFA PA in micro-

bial infection, acting as a driver for virulence of the bacterial

pathotype AIEC that is commonly isolated from the intestine of

CD patients (Martinez-Medina et al., 2009). Exposure of AIEC

to PA, in contrast to other pathogens where it is a negative

regulator of virulence, stimulated adhesion and biofilm formation

and induced an upregulation of an array of genes related to

virulence.

Both the antimicrobial properties of PA and its negative regu-

lation of bacterial virulence are the basis for its widespread use

in agriculture as PA clears Salmonella and Campylobacter spp.

rapidly post-treatment of poultry (Hinton and Linton, 1988; Iba

and Berchieri, 1995; Hung et al., 2013; González-Fandos et al.,

2015). As well as its direct toxicity to these pathogens, this

inhibitory effect is mediated by negative regulation of genes

critical for intestinal colonization and is thought to be a response

by these pathogens to the varying PA concentrations in the
Cell Reports 30, 2297–2305, February 18, 2020 2301



Figure 5. Pre-exposure of AIEC to PA Com-

bined with Exogenous PA Supplementation

PromoteColonization and Long-TermPersis-

tence

Drinking water was supplemented where indicated

with 20mM PA and provided to male C57BL/6 mice

for 3 days prior to infection. Persistence of LF82 (A

and B) and LF82-PA (C andD) was determined in the

ileum (A and C) and colon (B and D) 21 days post-

infection by colony counts. Data are expressed as

CFU/gram of tissue ± SD and were analyzed using

an unpaired t test (*p < 0.05).
human intestine. InSalmonella, high concentrations of PA under-

mine the stability of virulence regulators, such as HilD, meaning

Salmonella is less likely to colonize the lower intestine where PA

levels are highest (Hung et al., 2013). In direct contrast, we have

shown here that PA positively regulates virulence of the AIEC

strain LF82. Increasing exposure to PA, and increasing concen-

trations in the murine intestine, results in a >20-fold increase in

persistence as well as increasing the most notable phenotypic

traits of AIEC, such as adhesion and invasion of the intestinal

epithelium and biofilm formation. There are limited bacteria to

draw comparisons to with regard to PA and virulence, as few

respond positively to PA given its antimicrobial properties.

Enterohemorrhagic E. coli (EHEC) and Citrobacter increase viru-

lence by the type three secretion system (T3SS) in response to

PA, as previously shown (Nakanishi et al., 2009; Connolly

et al., 2018). However, Mycobacteria do become increasingly

virulent in the presence of PA with overlapping strategies used

by mycobacteria and AIEC as both metabolize and directly

incorporate PA into their membrane lipids (Jain et al., 2007; Up-

ton and McKinney, 2007; Lee et al., 2013; Si et al., 2016). This

strategy of PA incorporation into the outer membrane of AIEC,

as well as detoxifying PA, also increases resistance to pH and

likely plays a role in the increased adhesion and invasion noted

with LF82 after PA exposure (Figure 2).

Although PA has significant immunomodulatory properties in

the intestine, disease context is highly important. Although PA

supplementation in certain murine models reduces disease

through signaling to specific immune cells, here, PA supplemen-

tation in the presence of AIEC resulted in significant overgrowth

of the bacteria due to PA-driven phenotypic switches that

occurred (Smith et al., 2013). The dramatic increase in coloniza-

tion with increasing PA in the murine intestine also highlights a

significant problem with murine models of intestinal disease.
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PA levels, along with those of other SCFAs,

are significantly different in the murine in-

testine compared to the human intestine,

which is likely a contributing factor in the

very different outcomes in bacterial infec-

tion in these hosts (Cummings et al.,

1987). Although differing microbiomes are

a factor in susceptibility to infection, it is

probable that these protective effects of

the microbiome are mediated through,

and dependent on, the production of
SCFAs and other antimicrobial molecules by the intestinal

microbiota (Jacobson et al., 2018). Interestingly, in this regard,

the caecum where the majority of SCFAs are produced in

the murine intestine was distinct from the ileum and colon

during infection, as no significant increase in colonization by

AIEC was detected here. It is possible that the levels and

types of antimicrobials being produced in the caecum still

proved refractory to increased AIEC colonization despite its PA

adaptation.

Our ability to recapitulate in vitro the effects of PA on AIEC

indicates that PA in isolation exerts a significant effect on bacte-

rial virulence. This was further demonstrated using clinical

isolates of E. coli derived from CD patients that were exposed

to PA and tested for their ability to adhere to and invade human

colonic epithelial cells. Although the clinical isolates were

from the intestine of CD patients, it is unknown if they are true

AIECs given the confusion over what constitutes the AIEC

pathotype (Elhenawy et al., 2018). However, our phenotypic

examination of these isolates suggests that they are likely to

be AIEC (Figure 3). Exposure to PA induced significant increases

in virulence in all clinical strains. In comparison, the human

commensal isolate F-18 was not able to adapt to PA. These

data suggest that certain E. coli isolates recovered from

the humanCD intestine are readily adaptable to PA and that con-

trary to its effects on other pathogens, PA is actually a driver for

AIEC virulence and does not exert antimicrobial effects. Further

analysis of the PA effect on a large range of E. coli pathobionts

is necessary to definitively determine if this effect is AIEC

specific.

Here, we have shown through our work using in vivo models

that LF82 isolated post-PA supplementation in a murine model

is more virulent than without such treatment. This indicates

that rather than being directly inhibited by the antimicrobial



Figure 6. Competitive Index of LF82 from PA-Fed Mice versus LF82

from Water-Fed Mice

For the primary infection (1�), one group of mice (n = 4) were fed 20 mM PA for

3 days prior to challenge. A second group of micewere given only sterile water.

A subset of each of these mice were then infected with either LF82 or LF82

carrying a luciferase and erythromycin cassette (LF82lux), and the infection

was allowed to proceed for 7 days. This resulted in the recovery of strains

labeled LF82-PA1�, LF82-W1�, LF82lux-PA1�, and LF82lux-W1� from ileal and

colonic homogenates. Bacteria were isolated using LB supplemented with

either ampicillin or erythromycin. Subsequently, equal quantities of LF82-PA1�

and LF82lux-W1� were mixed, as were LF82lux-PA1� and LF82-W1�, giving final

concentrations of 13 109 CFU mL�1 (0.53 109 CFU mL�1 of each strain). The

ratios of LF82-PA1�:LF82lux-W1� and LF82lux-PA1�:LF82-W1� were deter-

mined by plating on LB plates supplemented with ampicillin or erythromycin.

Mice were again given either 20mMPA or sterile drinking water for 3 days prior

to challenge, before infection with either LF82-PA1�:LF82lux-W1� or LF82lux-

PA1�:LF82-W1�. Seven days post-infection, bacteria were recovered by plating

ileal and colonic homogenates on either ampicillin or erythromycin. Compet-

itive indices (CI) were determined by normalization to the initial inoculum ratios.

Black circles represent LF82-PA1�, whereas white circles represent LF82lux-

PA1�. The solid black line at CI = 1 represents LF82-W1� and LF82lux-W1�.

Statistical analyses for each dataset were conducted using the individual

colony counts. A two-tailed Wilcoxon rank-sum test was conducted (*p < 0.05

was deemed significant).
effects of PA, these strains instead show potential to be readily

adaptable to the naturally higher concentrations of PA in the

human intestine. Given the wide use of PA environmentally

and agriculturally, it is not inconceivable that bacteria such as

AIEC come into contact with such concentrations of PA, as

those in animal water, feed, and silage are reported to be

20 mM and higher (Hinton and Linton, 1988; European Food

Safety Authority, 2013; Hung et al., 2013; González-Fandos

et al., 2015) Such exposure would likely make the PA concentra-

tions in the human intestine, which increases from 1.5 mM in the

ileum to 27 mM in the colon, easily tolerable to E. coli strains as

we have indicated here (Cummings et al., 1987; Hung et al.,

2013). Horizontal transmission of strains from poultry to

humans as previously seen, driven by antibiotics, would there-

fore seem highly possible. Additionally, recent evidence has

suggested the food additive trehalose is a contributory factor

in the emergence and hypervirulence of two epidemic lineages

ofClostridioides difficile (Collins et al., 2018). Therefore, although

the focus rightly remains on antibiotic resistance, more work is

needed to determine the long-term effects of alternative
antimicrobials in generating more resistance and more virulent

bacteria capable of horizontal transmission. Although, in ad-

dressing one resistance problem, we must be careful that

another is not inadvertently created.

Most encouragingly, we were able to show that the in vitro

and ex vivo phenotypes that we observed were directly relat-

able to increased in vivo virulence (Figure 6). Our competitive

assay between isolates passaged through WT mice and mice

with a PA-supplemented diet revealed that those isolates

that were exposed to PA in vivo were able to outcompete

those that were not, in a PA-fed secondary mouse. Although

in a water-fed secondary mouse this out-competition was not

significant, there was a still an observed trend toward those

isolates initially recovered from a PA-fed mouse. However,

this recapitulates the in vitro observations made previously, in

that the PA -phenotype is reversible with the removal of PA

selective pressure.

Our findings here are not without precedent. Dietary addi-

tives and a mock Western diet have been demonstrated to

contribute to increased colonization of AIEC in murine models

(Martinez-Medina et al., 2014; Agus et al., 2016). This work ex-

plores the finding of PA as a paradoxical pro-virulence factor

in AIEC, which is at odds with its perceived role as an antimi-

crobial. The growing use of PA in the Western diet, coupled

with the rapid expansion of CD incidence in recent years, high-

lights the importance of this work in suggesting a potential

mechanism for diet as a key driver of selection in the gut,

which would favor the carriage and transformation of an

emerging pathogenic E. coli variant.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

LF82: Wild-type Prof. Daniel Walker, Uni. of Glasgow LF82

LF82-PA.1 (LF82 exposed to 20 mM PA; rep 1) This study LF82-PA.1

LF82-PA.2 (LF82 exposed to 20 mM PA; rep 2) This study LF82-PA.2

LF82-PA.3 (LF82 exposed to 20 mM PA; rep 3) This study LF82-PA.3

LF82DeutR: LF82 with eutR knocked out This study LF82DeutR

LF82-PADeutR: LF82-PA.1 with eutR knocked out This study LF82-PADeutR

F-18 Ormsby et al., 2016 F-18

B94 UK Clinical Research Network (9633) B94

B115 UK Clinical Research Network (9633) B115

B122 UK Clinical Research Network (9633) B122

B125 UK Clinical Research Network (9633) B125

Chemicals, Peptides, and Recombinant Proteins

Lysogeny Broth (LB) media LabM NCM0088A

Bacto Agar Formedium AGA02

Sodium chloride Merck N/A

Ammonium chloride Fisher Scientific 12125-02-9

Potassium hydrogen phosphate Merck 7758-11-4

Trace metal solution Cold Spring harbor protocols N/A

Magnesium sulfate VWR Chemicals 7487-88-9

Calcium chloride Fisher Scientific 22189-08-8

Thiamine hydrochloride Fisher Scientific 67-03-8

Iron chloride Fisher Scientific 10025-77-1

Ethylenediaminetetraacetic Acid (EDTA) Fisher Scientific 60-00-4

Taurocholic acid Fisher Scientific 345909-26-4

D-glucose Sigma 50-99-7

Sodium propionate Sigma 137-40-6

1,2-Propanediol Sigma 57-55-6

Ethanolamine Sigma 141-43-5

RPMI-1640 Thermofisher 31870025

Foetal calf serum Fisher Scientific 11573397

L-glutamine Fisher Scientific 15430614

No-Carbon-E (NCE media) Cheng et al., 2011 N/A

Cyano-cobalamin Fisher Scientific 68-19-9

RNAprotect QIAGEN 76526

RNAlater Thermofisher 10391085

Penicillin/streptomycin Sigma P4333

Triton X-100 Merck T9284

Acetic Acid VWR Chemicals 20104.334

Crystal Violet Merck C0775

M9 Minimal Salts, 5x Merck M6030

Dulbeccos Modified Eagle Medium (DMEM) Sigma D5671

Foetal Bovine Serum, Heat Inactivated Invitrogen 10500064

Phosphate Buffered Saline, PBS Invitrogen 14190086
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Erythromycin Sigma E5389

Ampicillin Sigma A1593
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LPS from Salmonella Typhimurium Merck L7770

Hydrochloric Acid Merck 258148

Turbo DNase Thermofisher AM2238

Critical Commercial Assays

Affinity Script cDNA multi-temp Synthesis Kit Agilent 26000-50

PerfeCTa SYBR Green FastMix Quanta Biosciences - VWR 200436

MicrobeExpress mRNA Kit Invitrogen AM1905

RNEasy Mini Kit QIAGEN 74104

Deposited Data

RNA-seq and Genomic sequence data This paper ENA:PRJEB36206

Experimental Models: Cell Lines

Caco-2 Human Intestinal Epithelial cells American Type Culture Collection (ATCC) ATCC HTB-37

RAW264.7 murine macrophage cell line American Type Culture Collection (ATCC) ATCC TIB71

Experimental Models: Organisms/Strains

Mouse C57BL/6J (Male; 6-8 Weeks old) Envigo N/A

Oligonucleotides (50-30)

Oligonucleotides can be found in Table S1 Sigma N/A

Software and Algorithms

GraphPad Prism v7.0c https://www.graphpad.com N/A

Mascot search engine v2.6.2 http://www.matrixscience.com N/A

MAUVE v2.4.0 http://darlinglab.org/mauve/mauve.html N/A

CLC Genomics Workbench v7.0.1 https://digitalinsights.qiagen.com/ N/A

ExPASy https://www.expasy.org N/A

EMBOSS Needle https://www.ebi.ac.uk/Tools/psa/emboss_needle N/A

Other

Breathe-Easy Sealing Membrane Merck 2380059-1PAK
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Dr Daniel

M. Wall (Donal.Wall@glasgow.ac.uk). All unique reagents generated in this study are available from the Lead Contact with a

completed Materials Transfer Agreement.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The Caco-2 human intestinal epithelial cell (IEC) line obtained from the American Type Culture Collection (ATCC) was maintained in

Dulbecco’s Modified Eagle Medium (DMEM) medium (Sigma) supplemented with 10% Heat-inactivated FBS (Sigma), L-glutamine

and penicillin/streptomycin (Sigma).

RAW 264.7 murine macrophages
RAW 264.7 macrophages were obtained from the ATCC and maintained in Roswell-Park Memorial Institute (RPMI) media supple-

mented with 10% Fetal bovine serum (FBS), L-glutamine and penicillin/streptomycin (Sigma). Cells were maintained at 37�C and

5% CO2 with regular media changes.

Animal experiments
All animal procedures were approved by an internal University of Glasgow ethics committee and were carried out in accordance with

the relevant guidelines and regulations as outlined by the UK Home Office (PPL 70/8584). Male C57BL/6 mice aged between eight
Cell Reports 30, 2297–2305.e1–e5, February 18, 2020 e2

mailto:Donal.Wall@glasgow.ac.uk
https://www.graphpad.com
http://www.matrixscience.com
http://darlinglab.org/mauve/mauve.html
https://digitalinsights.qiagen.com/
https://www.expasy.org
https://www.ebi.ac.uk/Tools/psa/emboss_needle


and ten weeks were obtained from The Jackson Laboratory (Envigo). Twenty millimolar sodium propionate was administered to

C57BL/6 mice in drinking water three days prior to infection. Control mice were given only sterile water. Twenty-four hours prior

to infection, mice were treated with an oral dose of 20 mg streptomycin before oral infection with 0.1 mL PBS (mock-infected) or

with approx. 1 3 109 colony forming units (CFU) of LF82 (lux) or LF82-PA (lux). Mice were euthanized 3 days after infection for

colonization experiments and 21 days after infection for persistence experiments, with caecal contents collected for SCFA analysis.

Ileal, caecal and colonic tissue were weighed and homogenized for enumeration of bacterial numbers. Bacterial numbers were

determined by plating tenfold serial dilutions onto LB agar containing the appropriate antibiotics. After 24 h of incubation at

37 �C, colonies were counted and expressed as CFU per gram of tissue.

In vivo competition assay
Male C57BL/6 mice aged between eight and ten weeks were obtained from Envigo. Twenty millimolar sodium propionate was

administered to C57BL/6 mice in drinking water three days prior to infection. Control mice were given only sterile water. Twenty-

four hours prior to infection, PA-treated and control mice were given an oral dose of 20 mg streptomycin before oral infection

with 0.1 mL PBS (mock-infected) or with approx. 1 3 109 colony forming units (CFU) of LF82 or LF82lux. After 7 days of infection,

mice were culled and bacteria recovered from both the ileum and colon on LB containing ampicillin (LF82) or erythromycin (LF82lux).

These strains were hence termed LF82-PA1�; LF82-W1�; LF82lux-PA1�; or LF82lux-W1�, respectively. Next, equal quantities of

LF82-PA1� and LF82lux-W1� were mixed, as were LF82lux-PA1� and LF82-W1�, giving final concentrations of approximately 1 3

109 CFUml-1 (0.53 109 CFUml-1 of each strain). The ratios of LF82-PA1�:LF82lux-W1� and LF82lux-PA1�:LF82-W1� were determined

by plating on LB plates supplemented with ampicillin or erythromycin. Mice were challenged as previously bacteria recovered

through plating of ileum and colon homogenates on LB agar supplemented with ampicillin or erythromycin. Competitive indices

were determined by normalization to the initial inoculum ratios.

METHOD DETAILS

Bacterial strains and growth conditions
Pathogenic AIEC strain LF82 and intestinal commensal E. coli strain F-18 were used in this study and were cultivated on Lysogeny

broth or agar. M9 minimal medium supplemented with 20 mM PA (M9-PA [20%M9 salts (32 g Na2H2PO42H2O (Merck), 12.5 g NaCl

(Merck), 2.5 g NH4Cl (Fisher scientific), 7.5g KH2PO4 (Merck) and 400 mL H2O], 0.1% Trace metal solution, 0.2 mM MgSO4 [VWR

chemicals], 0.02 mM CaCl2 [Fisher scientific], 1 mM Thiamine, 0.01% 5 g/L FeCl3, 0.01% 6.5 g/L EDTA, 0.1% taurocholic acid,

20 mM Sodium propionate and dH2O) was used for growth. Strains were grown in 100 mL of M9-PA at 37�C at 180 rpm, unless

stated. Bacterial growth was measured at optical density 600nm (OD600nm). To obtain adapted cells, upon reaching stationary

phase, cultures were back-diluted into freshM9-PA. Strains for infection were back-diluted after overnight growth into 10mL cultures

of RPMI-1640 (Sigma) supplemented with 3% fetal calf serum (FCS) and L-glutamine. These were then grown at 37�C in a shaking

incubator at 180 rpm to an OD600nm of 0.6 before further dilution to give final multiplicities of infection (MOI) of 10 or 100. Real-time

PCR was conducted using bacteria grown in No-Carbon-E (NCE) media (Davis et al., 1980). Twenty millimolar sodium propionate

(Sigma), 1,2-propanediol (Fisher Scientific) or D-glucose (Sigma) were added with 200 nM cyano-cobalamin (Sigma) to act as an

electron acceptor (Price-Carter et al., 2001). Cultures were grown overnight in LB, washed three times in NCE media with no carbon

source added, and inoculated 1:100 into 10 mL NCE media containing each respective carbon source. Cultures were grown until

mid-log phase (OD600 of 0.6) and used for RNA-extraction.

Clinical isolates (B94, B115, B122 and B125) were from the ‘‘Bacteria in Inflammatory bowel disease in Scottish Children Under-

going Investigation before Treatment’’ (BISCUIT) study (Hansen et al., 2013). Isolates B94, 115, 122 and 125 were recovered from

patients with Crohn’s disease. The median (range) age was 13.7 (11.2 to 15.2), height z-score was�0.4 (�2.0 to 0.2), weight z-score

was�0.7 (�3.4 to�0.1), and BMI z-score was�1.3 (�4.0 to 0.4). Symptom duration prior to diagnosis was median 7.5 months (5 to

12). 50% had granulomas present on initial histology. Phenotypes by Paris criteria (Levine et al., 2011) at diagnosis were: B94-

colonic, non-stricturing/non-penetrating (L2, B1); B115- colonic, non-stricturing/non-penetrating (L2, B1); B122- ileocolonic,

stricturing (L3, B2); B125- ileocolonic, non-stricturing/non-penetrating (L3, B1). This study is publically registered on the United

Kingdom Clinical Research Network Portfolio (9633).

Biofilm assays
Crystal violet static biofilm assayswere performed essentially as described previously (O’Toole, 2011). Briefly, bacteria were grown in

RPMI to an OD600nm of 0.6 at 37�C with shaking at 180 rpm. Cultures were further diluted 1:6 before 100 ml was loaded into a 96-well

plate, in technical triplicate. The outer wells of the 96-well plate were filled with PBS, only. Plates were sealed with clear plastic

seals (Sigma) and placed in a humid chamber. Where indicated, PA was added to a final concentration of 20 mM. Anaerobic culture

conditions were achieved using a microaerophilic cabinet. Biofilms were enumerated using the crystal violet method after 5 days of

incubation (O’Toole, 2011). All experiments were conducted in biological triplicate.
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Measurement of 1-13C-PA incorporation by gas chromatography coupled to isotope ratio mass spectrometry (GC-C-
IRMS)
LF82-PA was grown as before in M9 minimal medium here supplemented with 20 mM 1-13C-PA. Cultures were harvested at OD 0.6,

pelleted and washed with PBS. Air-dried cells were treated using a saponification and methylation procedure to produce fatty acid

methyl esters (FAMEs) of all cell fatty acids. Briefly, to air-dried cells was added 1 mL of methanol:heptane:toluene:2,2-dimethoxy-

propane:conc H2SO4 (39:34:20:5:2 by vol) and samples vortexed and then heated at 80�C for 30 mins. Upon cooling, 100 mL of the

upper heptane phase containing FAMEs was extracted to a clean vial ready for analysis. Samples were analyzed using gas chroma-

tography coupled to isotope ratio mass spectrometry through a combustion interface (GC-C-IRMS). FAMES separated by GC

(Agilent 6890, ZB-FFAP column (30 m x 0.25 mm x 0.25 mm), He carrier (2ml/min), temperature program of 80�C start followed by

7.5�C / min to 150�C, 2�C / min to 225�C and finally 5 min dwell at 225�C) and eluting FAMEs were oxidized to CO2 over hot copper

oxide (GVI Isochrome, Manchester, UK) in a He flow to the IRMS. An open split design allowed a portion of the eluting CO2 in He to

enter the IRMS where ions at mass to charge (m/z) 44, 45 and 46 were analyzed continuously and identified peaks were integrated

against a reference CO2 peak to yield the background and Craig corrected 13C/12C ratio expressed in the normal units d13C (per mil)

versus the internationally accepted scale for 13C/12C measurements, VPDB. Samples were bracketed by a certified reference

FAME mix (Supelco� 37 Component FAME Mix, Sigma-Aldrich, UK; containing Butyate, Hexanoate, Octanoate, decanoate, Unde-

canoate, Laurate, tridecanoate, tetradecanoate, Myristoleic, Pentadecanoate, Cis-10-pentadecanoic, Palmitate, palmitoleic, hepta-

decanoic, cis-10-Heptadecenoic, octadecanoic, trans-9-Elaidic, cis-9-Oleic, Linolelaidic, linoleate, Arachidate, gamma-Linolenic,

cis-11-eicosenoate, Linolenate, heneicosanoate, cis-11,14-Eicosadienoic, docosanoate, cis-8,11,14-Eicosatrienoic, Erucate, cis-

11,14,17-Eicosatrienoic, tricosanoate, cis-5,8,11,14-Eicosatetraenoic, cis-13-16-Docosadienoic, lignocerate, cis-5,8,11,14,17-Ei-

cosapentaenoate, Nervonate, cis-4,7,10,13,16,19-Docosahexaenoate) to retention time lock for 37 odd and even chain FAMEs.

Adherence and invasion assays
Caco-2 IECs were washed once before infection and bacterial suspensions were added at an MOI of 10. Plates were centrifuged

after the initial inoculation (700 x g, 15 min), before the infection was allowed to proceed for 2 h at 37�C in 5% CO2 atmosphere.

Non-adhered bacteria were washed away and the infected cells were lysed with 1% Triton X-100 for 5 min. Bacteria were serially

diluted in Luria Bertani (LB) broth and spread onto LB agar plates. Total bacteria were enumerated by counting colony forming

units (CFUs) after overnight incubation at 37�C. To determine bacterial invasion, cells were infected for 2 h, extracellular bacteria

were then washed away and 50 mg/ml gentamycin sulfate was added for 1 h to kill any remaining cell-associated bacteria before

Triton X-100 treatment.

Gentamicin protection assay
Intracellular replication was analyzed through a gentamicin protection assay over a time course of infection. Bacteria were added

at an MOI of 10 to LPS-activated RAW 264.7 cells and the infection allowed to proceed for 1 h. After 1 h, non-internalised bacteria

were removed bywashing three times inmedia containing gentamicin (50 mg/ml). Cells were then held in gentamicin containingmedia

for 2 h. After 2 h (time point = 0h), cells were washed three times in PBS, before being lysed with 1% Triton X-100. Bacteria were

enumerated via serial dilution. A further time point at 4 h post the 0 h time point was analyzed.

Acid survival assays
Cultures of bacteria were grown overnight at 37�C in LB. The pH of these cultures was lowered to pH 3 using 1 M HCl. Samples

were taken every 20 min for 1 h and serially diluted in LB. Dilutions were plated in triplicate onto LB agar and incubated overnight

at 37�C. Colonies were counted to determine the number of surviving cells.

Total RNA extraction and mRNA enrichment
Cultures were grown overnight in LB, washed three times in NCE media with no carbon source added, and inoculated 1:100 into

10 mL NCE media containing each respective carbon source. Cultures were grown until mid-log phase (OD600 of 0.6) and mixed

with two volumes of RNAprotect reagent (QIAGEN, Valencia, CA, USA), before incubating for 5 min at room temperature.

Total RNA was extracted, genomic DNA removed and samples enriched for mRNA as described previously by Connolly et al.

(2016). Samples for RNA-sequencing (RNA-seq) analysis were QC tested for integrity and rRNA depletion using an Agilent Bio-

analyzer 2100 (University of Glasgow, Polyomics Facility).

Genomic analysis and SNP identification
A bacterial lawn generated from single overnight colonies of LF82 and three independent cultures of LF82-PA were resuspended in a

microbank bead tube, inverted four times and incubated at room temperature for 2 min. The cryopreservative was removed and

the samples sent to MicrobesNG (Birmingham University, UK) for sequencing. Genomic DNA was extracted using a Illumina Nextera

XT DNA sample kit as per manufacturer’s protocol (Illumina, San Diego, USA). Samples were sequenced on the Illumina MiSeq using

a 2x250 paired-end protocol, De novo assembled using SPAdes version 3.5, aligned to the reference genome using BWA-MEM

0.7.5. Variants were called using samtools 1.2 and VarScan 2.3.9 and annotated using snpEFF 4.2. Subsequent genomic analysis
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was performed using a combination ofMAUVE, CLCgenomics (Version 7.0.1), ExPASY and EMBOSSNeedle. The sequence reads in

this paper have been deposited in the European Nucleotide Archive under accession number PRJEB36206.

RNA-seq transcriptome generation and data analysis
cDNA synthesis and sequencing was performed at the University of GlasgowPolyomics Facility, essentially as described by Connolly

et al. (2016). Briefly, sequencing was preformed using an Illumina NextSeq 500 platform obtaining 75 bp single end reads. Samples

were prepared and sequenced in triplicate. Raw reads were QC checked using FastQC (Babraham Bioinformatics, Cambridge, UK)

and trimmed accordingly using CLC Genomics Workbench (CLC Bio, Aarhus, Denmark). Trimmed reads were mapped to the LF82

reference genome (NCBI accession number: CU651637) allowing for 3 mismatches per read. Analysis of differential expression

was performed using the Empirical analysis of DGE tool, which implements the EdgeR Bioconductor tool (Robinson et al., 2010).

Differentially expressed genes were identified by absolute fold change (cutoffs log2) and a P value of % 0.05. Volcano plots

were generated in CLC Genomics Workbench. The sequence reads in this paper have been deposited in the European Nucleotide

Archive (PRJEB36206).

Quantitative real-Time PCR (qRT-PCR)
cDNA was generated from total RNA using an Affinity Script cDNA Synthesis Kit (Agilent) following the manufacturer’s instructions.

Levels of transcription were analyzed by qRT-PCR using PerfeCTa� SYBR� Green FastMix� (Quanta Biosciences). Individual

reactions were performed in triplicate within each of three biological replicates. The 16S rRNA and rpoS genes were used to

normalize the results. RT-PCR reactions were carried out using the ECO Real-Time PCR System (Illumina, San Diego, CA, USA)

according to the manufacturer’s specifications and the data were analyzed according to the 2-DDCT method (Livak and Schmittgen,

2001). All primers used are listed in Table S1.

Construction of p16Slux

LF82 and LF82-PA lux integrated strains containing the erythromycin cassette were generated using the protocol of Riedel et al.

(2007). The bioluminescent properties of these strains allowed visualization of the establishment of infection but despite bacteria

being recovered it was noted that bioluminescent signal was lost. However, upon plating the murine microbiome onto LB agar

containing ampicillin (100 mg/ml), it was observed that several members of the microbiota also harbored ampicillin resistance. LB

supplemented with erythromycin (500 mg/ml) did not support the growth of any microbiota species; therefore utilizing the erythro-

mycin cassette inserted as part of the lux integration allowed for the selection of LF82 and LF82-PA, and was used in subsequent

animal experiments. Strains containing the lux cassette were only used during in vivo infections and subsequent in vitro experiments

when these strains were re-isolated from the murine intestine and tested for virulence.

SCFA analysis by gas chromatography
Faecal contents of murine caeca were isolated from PBS treated mice three dpi. The concentrations of acetate, propionate and

butyrate per gram of dry weight were measured by gas chromatography as previously described (Laurentin and Edwards, 2004)

and expressed as a ratio for comparison to the known human acetate:propionate:butyrate SCFA ratio (Cummings et al., 1987).

The effect of PA supplementation in drinking water on PA levels was measured by extraction of caecal contents from PA treated

and untreated mice and the levels of SCFAs again calculated per gram of dry weight.

QUANTIFICATION AND STATISTICAL ANALYSIS

Values are represented as means and standard deviation. All statistical tests were performed with GraphPad Prism software, version

7.0c. All replicates in this study were biological; that is, repeat experiments were performed with freshly grown bacterial cultures,

immortalized cells and additional mice, as appropriate. Technical replicates of individual biological replicates were also conducted,

and averaged. Significance was determined as indicated in the figure legends. RT-PCR data was log-transformed before statistical

analysis. Values were considered statistically significant when p-values were *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

DATA AND CODE AVAILABILITY

The sequence reads in this paper have been deposited in the European Nucleotide Archive (ENA:PRJEB36206).
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