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Time-series analysis techniques are being increasingly used to process satellite observations of volcanic gas emis-
sions and heat flux,with the aim of identifying cyclic behaviour that could informhazard assessment or elucidate
volcanic processes. However, it can be difficult to distinguish cyclic variations due to geophysical processes from
those that are artefacts of the observation technique. Here, we conduct a comprehensive investigation into the
origin of cyclicity in volcanic observations by analysing daily, global satellite measurements of volcanic SO2 load-
ing by the Ozone Monitoring Instrument (OMI) and thermal infrared anomalies detected by the Moderate Res-
olution Imaging Spectroradiometer (MODIS). We use a fast Fourier Transform (FFT) multi-taper method
(MTM) to analyse multiple phases of activity at 32 target volcanoes, utilising measurements obtained from
three NASA satellite instruments (Aura – OMI, Aqua – MODIS and Terra – MODIS), and identify a common
cycle (period of ~2.3 days), which is not considered to be of volcanic origin. Based on the presence of this cycle
in multiple satellite datasets, we attribute it to variations in viewing angle during the 16-day orbit repeat cycle
of sun-synchronous satellites maintained in Low Earth Orbit (LEO). A 5-point averaging correction procedure
is tested on satellite observations from Kilauea volcano, Hawaii, and is found to reduce the impact of higher fre-
quency cycles and reveal the presence of longer-period geophysical signals. In addition to the identification of a
signal common to different measurement techniques, an underlying cyclical pattern was found in the OMI SO2

observations (periods of ~7.9 and 3.2 days) generated by the OMI Row Anomaly (ORA). We conclude that iden-
tification of the presence andmagnitude of non-geophysical cyclic behaviour, which can suppress natural cycles
in time-series data, and implementation of appropriate corrections, is crucial for accurate interpretation of satel-
lite observations. The use of data averaging to suppress non-geophysical cycles imposes limits on the length of
natural cycles that can be confidently identified inmoderate resolution satellite observations frompolar-orbiting
spacecraft.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Satellite remote sensing is an essential tool for the monitoring and
assessment of environmental systems. Whether in the elucidation of
subsurface processes (Lu, 2007), changes in land use (Lambin &
Strahlers, 1994), natural hazard assessment and mitigation (Tralli,
Blom, Zlotnicki, Donnellan, & Evans, 2005), or atmospheric conditions
(Martin, 2008), satellite measurements are expanding our capability
to assess the impacts of both natural and anthropogenic change in
near real time and on a global scale. Volcanic systems are dynamic
and unpredictable in nature with multiple mechanisms potentially re-
sponsible for initiating or sustaining eruptions. Due to this complexity,
. This is an open access article under
it is not feasible to quantify all the possible driving forces contributing
to eruptions that would be necessary for accurate model construction
(Sparks, 2003). Therefore, forecasting of volcanic eruptions tends to
focus on past behaviour; i.e., the identification and classification of his-
toric volcanic activity allowing the calculation of recurrence rate
which can be incorporated into models (Denlinger & Hoblitt, 1999;
Dzierma & Wehrmann, 2010; Odbert, Stewart, & Wadge, 2014; Sparks,
2003; Swanson & Holcomb, 1990; Voight et al., 1999). This method
can be effective at volcanic systems characterized by relatively stable ac-
tivity, where factors such as the chemical composition of the source
magma and the conduit dimensions in the subsurface plumbing system
show little temporal variability (Jaupart & Allègre, 1991; Papale, Neri, &
Macedonio, 1998;Wilson, Sparks, &Walker, 1980). At volcanoes where
activity displays repetitive characteristics, time-series analysis can be
utilised to identify the duration and offset of the cycles present, with
the goal of forecasting periods when resurgent activity should be ex-
pected (Odbert et al., 2014). The extended resurgence period typical
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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of volcanic systems requires a data series of significant length and with
appropriate temporal resolution to assess the characteristics of volcanic
activity. Ground-based measurements have previously been employed
in analysis of cyclic behaviour (Nicholson, Mather, Pyle, Odbert, &
Christopher, 2013), but can be hindered by the high costs associated
with the deployment and maintenance of ground-based equipment,
or precluded entirely at very hazardous volcanoes with restricted ac-
cess. In contrast, moderate resolution satellite-based instruments pro-
vide near global daily coverage without the associated cost or risks
associated with ground-based monitoring. NASA's polar-orbiting A-
Train satellite constellation includes two instruments capable of moni-
toring volcanic systems on a daily basis: the Ozone Monitoring Instru-
ment (OMI) on Aura and the Moderate Resolution Imaging
Spectroradiometer (MODIS) on Aqua. Both OMI and MODIS now offer
data records spanning over 10 years, providing near-coincident mea-
surements of volcanic sulphur dioxide (SO2) emissions and heat fluxes,
respectively, with an additional MODIS sensor available on the Terra
satellite providing multiple MODIS overpasses per day. To date, there
have been few efforts to exploit the synergy of OMI andMODIS in char-
acterizing cyclic volcanic behaviour.

To identify any geophysical variability and trends in satellite obser-
vations, interference from instrumental or atmospheric effects must
first be identified and removed.Whilst themajor interference factors af-
fecting satellite retrievals are generally documented before the release
of data (e.g., Krotkov, Carn, Krueger, Bhartia, & Yang, 2006; Wright,
Flynn, Garbeil, Harris, & Pilger, 2002), subtler variations can go uniden-
tified in visual inspection of data in the time domain. Through the use of
spectral density estimation, patterns can be distinguished in data ob-
tained from satellite instruments (e.g., Murphy, Wright, Oppenheimer,
& Souza Filho, 2013; Flower & Carn, 2015); thesemay be interpreted ei-
ther as a result of natural processes or as artefacts of the measurement
techniques employed. In this paper we discuss the identification of cy-
cles in satellite-based time series data from active volcanoes and their
attribution, based on an extensive analysis of OMI and MODIS observa-
tions. The near-coincidence of OMI and Aqua/MODIS measurements
from the A-Train minimizes any impact of variable volcanic activity or
atmospheric conditions on the analysis, and hence analysing the
datasets in concert provides unique insight into the origin of cyclic sig-
nals. Our conclusions have broad implications for the interpretation of
results from time-series analysis of moderate resolution satellite obser-
vations of volcanic activity, and are also relevant to any observations of
sub-pixel scale phenomena from space.

2. Methodology

2.1. SO2 emissions

SO2 is commonly emitted in both effusive and explosive phases of vol-
canic eruptions and during passive, non-eruptive degassing (Bluth,
Schnetzler, Krueger, & Walter, 1993; Carn et al., 2003; Carn, Clarisse, &
Prata, 2016; McCormick et al., 2013). Due to its strong absorption bands
in the ultraviolet (UV) spectral region (e.g., Bogumil et al., 2003), as well
as its relatively low abundance in the atmosphere compared to other vol-
canic gases such as water vapour and carbon dioxide (CO2), SO2 is the
main target for remote sensing of volcanic eruptions and degassing
(Krotkov et al., 2006; Krueger, 1983). The dynamic and unpredictable na-
ture of volcanic activity requires timely assessment and continuousmon-
itoring of volcanic systems. However, due to safety and logistical
concerns, in many locations continuous ground-based monitoring is not
feasible, whereas satellite remote sensing provides a safe and effective
means of global volcano monitoring (Carn, Krotkov, Yang, & Krueger,
2013). Whilst multiple UV satellite sensors provide tropospheric SO2

measurements (e.g., the Scanning Imaging Absorption Spectrometer for
Atmospheric Chartography [SCIAMACHY]; Lee, Richter, Weber, &
Burrows, 2008; OMI; Krotkov et al., 2006; the Global Ozone Monitoring
Experiment-2 (GOME-2); Rix et al., 2009; theOzoneMapping andProfiler
Suite [OMPS]; Carn, Yang, Prata, & Krotkov, 2015), OMI currently provides
the best spatial resolution (13 × 24 km at nadir) whilstmaintaining near-
global daily coverage (Krotkov et al., 2006). Operational Level 2 OMI SO2

data (OMSO2) are publicly available from the NASA Goddard Earth Sci-
ences (GES) Data and Information Services Center (DISC; http://disc.sci.
gsfc.nasa.gov/Aura/data-holdings/OMI/omso2_v003.shtml), providing
daily, global measurements of SO2 total column amounts (in Dobson
Units (DU); 1 DU = 2.69 × 1016 molecules/cm2). Operational OMSO2
data are currently processed with a linear fit (LF) algorithm (Yang et al.,
2007) using UV radiances measured by OMI in 10 discrete wavelength
bands. The typical uncertainty on SO2 columns retrieved by the LF algo-
rithm is ~20% below 100 DU; above this column amount non-linear ab-
sorption effects, which are not accounted for in the algorithm, greatly
increase the uncertainty (Yang et al., 2007). However, SO2 column
amounts N100 DU are only present transiently in the core of fresh
volcanic eruption clouds and hence are not expected to impact our
analysis significantly. The presence of cloud can impact the retrieval
of SO2, with overlying meteorological clouds masking volcanic
plumes at lower altitude due to increased scattering of radiation,
whilst plumes present above the cloud tops are susceptible to over-
estimation of SO2 columns due to multiple scattering effects (Carn
et al., 2013).

Accurate retrieval of SO2 column amounts also requires a-priori
knowledge of the injection altitude of the SO2, which is not available
at the LF algorithm runtime and hence must be assumed. Volcanic SO2

column amounts in the OMSO2 product are calculated for three
predefined SO2 vertical profiles corresponding to the lower troposphere
(TRL; SO2 centre of mass altitude (CMA) of ~3 km), mid-troposphere
(TRM; CMA of ~8 km) and the lower stratosphere (STL; CMA of
~17 km) (Yang et al., 2007; Carn et al., 2013). The most appropriate
SO2 vertical profile is selected based on the nature of the volcanic activ-
ity under observation. For predominantly passive degassing volcanoes
the emissions may be assumed to be confined within approximately
1 km of the summit making the TRL (3 km) SO2 columns the most ap-
propriate for most active volcanoes (Carn et al., 2013) whilst the TRM
and STL SO2 products are representative of moderate and large erup-
tions (VEI ≤ 3 and VEI ≥ 4, respectively) (McCormick et al., 2013). Due
to the major focus of this work on persistent SO2 emissions, retrievals
were obtained from the TRL (3 km) SO2 product. This may result in
overestimation of SO2 emissions on days when stronger eruptions
injected SO2 to higher altitudes, but because our analysis focuses on
temporal trends in volcanic emissions rather than the absolute values
obtained, we believe occasional overestimation should not adversely af-
fect the results.

For this analysis, time-series of SO2 mass were generated by inte-
grating TRL SO2 column amounts measured by OMI in a 4° square re-
gion centred on each target volcano (Table 1). Data were obtained
from individual OMI orbits to prevent issues with multiple retrievals
from overlapping orbits at high latitudes. If multiple overpasses
intersected a sampling region, data were obtained from the swath
with the closest to nadir viewing angle over the volcanic target. Var-
iability in the measured SO2 mass can result from variations in the
volcanic emissions, plume altitude, interference from neighbouring
volcanoes or meteorological clouds, but are also modulated by vari-
ations in OMI pixel size or GIFOV (ground-projected instantaneous
field of view) as the sensor viewing geometry changes during a 16-
day satellite orbit repeat cycle (Krotkov et al., 2006). The latter effect
is most pronounced for sub-pixel scale SO2 plumes which are aver-
aged over the OMI GIFOV. An additional interference affecting OMI
measurements since 2008 is the OMI Row Anomaly (ORA), which
has rendered a variable fraction of the OMI swath unusable due to
a blockage in the sensor's field of view (FOV) (see: http://www.
knmi.nl/omi/research/product/rowanomaly-background.php). Pre-
vious studies using time-series analysis techniques have been limit-
ed to periods before the development of the ORA to reduce the
impact of this feature on output (Flower & Carn, 2015).
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Table 1
Target volcanoes included in this analysis, with dominant style of activity and investigated analysis periods.

Code Volcano Location Dominant activity Analysis periods

AMB Ambrym Vanuatu Two active vents within a 12 km caldera characterized by a lava lake and strombolian eruptions with near
continuous degassing (Bani et al., 2012)

01/2005–12/2008a

01/2009–12/2013a

05/2006–12/2007
05/2008–12/2013

ANT Anatahan Mariana
Islands

Periodic explosive eruptions producing moderate plumes occasionally accompanied by pyroclastic flows
(Siebert, Simkin, & Kimberly, 2010)

01/2005–09/2005
03/2006–06/2006
01/2007–08/2008

AUG Augustine Alaska, USA Increased activity in May 2005 culminating in an explosive eruption in January 2006 generating ash
plumes, pyroclastic flows with ongoing lava dome growth (Global Volcanism Program, 2006a)

12/2005–04/2006

BAG Bagana Papua New
Guinea

Continuous extrusion of lava with intermittent explosive events generating pyroclastic flows
(McCormick, Edmonds, Mather, & Carn, 2012)

01/2005–12/2008a

01/2009–12/2013a

Yearly
BEZ Bezymianny/Kliuchevskoi Kamchatka,

Russia
Bezymianny displays cyclical dome growth and collapse events occasionally accompanied by lava flows
and explosive eruptions; whilst Kliuchevskoi shows frequent summit explosive activity often
accompanied by flank lava flows (Siebert et al., 2010)

01/2005–12/2008a

01/2009–12/2013a

11/2005–12/2005
04/2006–12/2006
05/2007–01/2008
07/2008–09/2008
12/2009–02/2010
05/2010–02/2013

DUK Dukono Indonesia Continuous mild-moderate explosive eruptions generating SO2 and ash plumes (Global Volcanism
Program, 2011a)

01/2005–12/2008a

01/2009–12/2013a

Yearly
ETN Etna Italy Continuous activity characterized by persistent degassing and explosions at the summit with lava flows

generated on the flanks of the volcano (Bonaccorso et al., 2011)
01/2005–12/2008a

01/2009–12/2013a

12/2005–12/2005
07/2006–12/2006
03/2007–04/2008
05/2008–07/2009
04/2010
08/2010–04/2013
09/2013–12/2013

FUG Fuego Guatemala Eruptions dominated by lava flows, and explosions generating pyroclastic flows (Lyons, Waite, Rose, &
Chigna, 2010)

01/2005–12/2008a

01/2009–12/2013a

Yearly
KRG Karangetang Indonesia Frequent explosive eruptions and lava dome growth occasionally accompanied by pyroclastic flows

(Global Volcanism Program, 2011b)
01/2005–12/2008a

01/2009–12/2013a

01/2005–08/2005
06/2006–10/2007
11/2008–03/2010
08/2010–12/2010
03/2011–08/2011
05/2012–09/2013

KTH Karthala Comoros Periodic explosive eruptions followed by the formation of transient lava lakes (Global Volcanism
Program, 2006b)

01/2005–12/2008a

01/2009–12/2013a

04/2005
11/2005–12/2005
05/2006–06/2006
01/2007

KMS Karymsky Kamchatka,
Russia

Periodic explosive eruptions accompanied by lava flows (Siebert et al., 2010) 01/2005–12/2008a

01/2009–12/2013a

Yearly
KLT Kelut Indonesia Lava dome growth with mild-moderate explosive activity (Global Volcanism Program, 2008) 10/2007–04/2008
KIL Kilauea Hawaii,

USA
Since 2008, persistent summit lava lake generating continuous SO2 emissions, with lava flows from East
Rift Zone vents (Mangan, Cashman, & Swanson, 2015)

01/2005–12/2008a

01/2009–12/2013a

01/2005–06/2007
07/2007–03/2011
04/2011–07/2011
08/2011–12/2013

LPV Lopevi Vanuatu Vulcanian to sub-plinian eruptions with frequent degassing and occasional lava flows generated
following vigorous explosion (Bani et al., 2012)

01/2005–03/2005
10/2005–08/2006
04/2007–05/2007
02/2008

MYN Mayon Philippines Mild-moderate explosive activity generating lava flows (Global Volcanism Program, 2006c, 2007) 08/2005
02/2006
07/2006–10/2006
08/2008
09/2009–01/2010
04/2013

MRP Merapi Indonesia Cyclical lava dome growth and collapse on a time scale of 4–6 years (Pallister et al., 2013) 03/2006–08/2007
10/2010–07/2012

NRZ Nevado del Ruiz Colombia Moderate explosive events in 2012 with ongoing degassing (Global Volcanism Program, 2012a) 02/2012–07/2013
NYG Nyiragongo DR Congo Continuous degassing from persistent lava lake (Tedesco et al., 2007) 01/2005–12/2008a

01/2009–12/2013a

Yearly
PCY Pacaya Guatemala Frequent strombolian activity with intermittent lava flows and occasional moderate explosive eruptions 01/2005–12/2008*
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Table 1 (continued)

Code Volcano Location Dominant activity Analysis periods

(Rodriguez et al., 2004) 01/2009–12/2013*
01/2005–10/2010
03/2013–12/2013

PGN Pagan Mariana
Islands

Mild eruption generating SO2 and ash emissions (Global Volcanism Program, 2012b) 12/2006
04/2009
05/2010–08/2010
03/2011–08/2011

PDF Piton de la Fournaise Réunion Effusive eruptions periodically occur at a rate of ~3 events/year with a significant caldera collapse
occurring in 2007 (Froger et al., 2015)

01/2005–12/2008*
01/2009–12/2013*
02/2005
10/2005–12/2005
07/2006–03/2007
09/2008–02/2009
11/2009–01/2010
10/2010–12/2010

POP Popocatepetl Mexico Activity is characterized by open vent explosion and passive degassing (Roberge, Delgado-Granados, &
Wallace, 2009)

01/2005–12/2008*
01/2009–12/2013a

Yearly
RBL Rabaul Papua New

Guinea
Persistent degassing with frequent emissions of ash and periodic mild-severe explosive activity
(McCormick et al., 2012)

01/2005–12/2008a

01/2009–12/2013a

01/2005–02/2006
08/2006–01/2010
07/2010
03/2011–08/2011
01/2013–12/2013

STM Santa Maria Guatemala Persistent lava dome growth at Santiaguito accompanied by minor explosions; periodic larger explosions
generate pyroclastic flows and lahars (Global Volcanism Program, 2010)

01/2005–12/2008a

01/2009–12/2013a

Yearly
SMU Semeru Indonesia Persistent strombolian activity with cycles of dome growth and collapse on time scales of 5–7 years

generating pyroclastic flows (Kassouk, Thouret, Gupta, Solikhin, & Liew, 2014)
01/2005–12/2008a

01/2009–12/2013a

Yearly
SVL Shiveluch Kamchatka,

Russia
Cyclical lava dome growth terminating in explosive eruptions generating pyroclastic flows (Siebert et al.,
2010)

01/2005–12/2008a

01/2009–12/2013a

Yearly
SHV Soufriere Hills Volcano Montserrat Lava dome growth until 2010 with periodic explosive eruptions and dome collapse events generating

pyroclastic flows (Wadge et al., 2014)
01/2005–12/2008a

01/2009–12/2013a

01/2005–02/2010
03/2010–12/2013

STB Stromboli Italy Persistent mild strombolian explosions and sporadic effusive eruptions (Barberi, Civetta, Rosi, &
Scandone, 2009)

01/2005–12/2008a

01/2009–12/2013a

Yearly
TNK Tinakula Solomon

Islands
Mild-moderate explosive eruptions producing gas and ash plumes (Global Volcanism Program, 2006d) 01/2005–12/2008a

01/2009–12/2013a

02/2006–11/2007
09/2008–10/2012

TNG Tungurahua Ecuador Explosive eruptions accompanied by ash emissions, pyroclastic flows and lava flows (Steffke, Fee, Garces,
& Harris, 2010)

01/2005–12/2008a

01/2009–12/2013a

01/2005–07/2009
01/2010–07/2010
11/2010–12/2013

VLR Villarrica Chile Continuous degassing from a lava lake confined in the summit crater with occasional strombolian activity
(Dzierma & Wehrmann, 2010)

01/2005–12/2008a

01/2009–12/2013a

01/2005–12/2007
01/2009–03/2009
11/2009–04/2012
07/2013

YSR Yasur Vanuatu Persistent strombolian activity (Bani et al., 2012) 01/2005–12/2008a

01/2009–12/2013a

Yearly

a ORA assessment.
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2.2. Thermal anomalies

To exploit the synergy offered by NASA's A-Train satellite constella-
tion, we also investigate coincident cyclicity in other observations of
volcanic activity. For this we use satellite-based detection of thermal in-
frared (TIR) anomalies by the MODIS instruments obtained from the
MODVOLC thermal alert system (Wright et al., 2002; http: http://
modis.higp.hawaii.edu.). Thermal anomalies are caused by increased
TIR radiance from volcanic features such as lava lakes, lava flows, and
lava domes, and to a lesser extent lava fountains and pyroclastic flows
(due to their more transient nature). With the exception of large lava
flows, the surface area of these features is typically smaller than a
1 × 1 km nadir MODIS pixel, and hence the TIR signal is also subject to
sub-pixel averaging effects (Steffke & Harris, 2011; Wooster, Rothery,
& Kaneko, 1998; Wright et al., 2002; Wright, Flynn, Garbeil, Harris, &
Pilger, 2004). MODVOLC incorporates TIR data obtained from both
day- and night-time overpasses of two MODIS instruments on-board
NASA's Aqua and Terra platforms (Table 2). MODVOLC data consists of
spectral radiance (W m−2 sr−1 μm−1) obtained from 5 MODIS bands
(centred at wavelengths of 3.96, 1.64, 11.03 and 12.02 μm), with two

http://modis.higp.hawaii.edu
http://modis.higp.hawaii.edu


Table 2
Overview of subdivision characteristics for incorporated data.

Platform Aura Aqua Terra

Instrument OMI MODIS MODIS
Identification code OMI AMA AMD AMN TMA TMD TMN
Measurement characteristics Daytime Day and Night-time Daytime only Night-time only Day and Night-time Daytime only Night-time only
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channels (21 and 22) covering the 3.96 μmbandwith different dynamic
ranges and therefore different saturation temperatures.We use Band 22
radiances unless the saturation temperature (~330 K) is exceeded in
which case the Band 21 radiance, with its higher saturation temperature
(~500 K) was incorporated (Wright et al., 2002, 2004). Aqua-MODIS is
part of NASA's A-Train constellation and hence provides daytime mea-
surements coincident with OMI with an ascending node of 1:30 pm
(local time), whilst Terra has a descending node of 10:30 am (local
time) (NASA, 2013). Differences between daytime Terra and Aqua
MODIS thermal anomaly detection can arise for several reasons, not
necessarily of volcanic origin. For example, in tropical regions orograph-
ic cloud cover often develops by the early afternoon, and hence a ther-
mal anomaly may be detected in the morning Terra-MODIS overpass,
but obscured by clouds in the 1:30 pmAqua-MODISmeasurements. Dif-
ferences are also expected between the day and night-time MODIS ob-
servations from each platform (AMD/AMN, TMD/TMN: Table 2) due to
the different alert thresholds implemented for the identification of
hot-spots by the MODVOLC algorithm (Wright et al., 2002, 2004). Sep-
arate MODVOLC alert thresholds were developed for day and night-
time data to prevent the generation of false alerts resulting fromdiurnal
variations in ground surface heating (Wright et al., 2002, 2004). The ab-
sence of solar radiation allows the use of a lower threshold in the night-
time MODVOLC algorithm, enabling it to distinguish subtler variations
in thermal anomalies, which is of particular use in the detection of cool-
er features such as lava domes or fresh pyroclastic deposits (Wright et
al., 2002).

The MODVOLC interface enables the selection of TIR anomalies at a
variety of scales from global coverage down to 0.1 × 0.1° latitude and
longitude regions centred on known Holocene volcanoes. In this work,
thermal alerts for each of our target volcanoes were individually inves-
tigated to identify the most appropriate region for data collection. A
0.1 × 0.1° region was used for locations with spatially confined features
such as lava lakes or lava domes, minimising the likelihood of incorpo-
rating false detections. Alternatively, a 0.5 × 0.5° region provided appro-
priate coverage where features were more spatially extensive such as
lava flows or pyroclastic deposits. For some targets, such as Nyiragongo,
activity at a neighbouring volcano (in this case, Nyamulagira) also con-
tributed to the detected TIR anomalies; where this occurred the inter-
fering anomalies associated with activity at the non-target site were
removed from the dataset prior to processing (if this resulted in the re-
moval of all anomalies then the value for that daywas set to zero). In the
light of the possible impacts of variable MODIS viewing geometry and
overpass timeon the TIRmeasurements (described above), for our anal-
ysis MODVOLC data obtained for each of the target volcanoes (Table 1)
were subdivided by satellite andmeasurement time (Table 2), to reduce
the impact of any spurious cyclicity resulting from inconsistent viewing
conditions.

2.3. Target volcano selection and time-series analysis

Time-series of daily SO2 mass and TIR radiance measured over a 9-
year period (2005–2013) for 24 volcanoes, with generally persistent ac-
tivity, were initially analysed to assess whether any common cyclical
pattern could be discerned between pre- (2005–2008) and post-
(2009–2013) ORA development (Table 1). Following initial assessment,
data for each volcano were segregated into individual eruptive phases
with continuously active volcanoes segregated for annual analysis and
an additional 8 volcanoes, characterized by more sporadic short-lived
eruptions, were incorporated. The resulting 32 target volcanoes selected
for this analysis (Table 1), display a variability in eruption style, al-
though the main criteria for selection was the availability of sufficient
OMI SO2 and MODVOLC data with minimal extended periods of quies-
cence. A total of 173 discrete eruptive periodswere analysed, in addition
to the 48 analyses run onOMI data alone (Table 1). Following data com-
pilation, dayswith no detected SO2 or TIR anomalywere assigned a zero
value tomaintain a continuous time series and amethod of analysis de-
veloped for the assessment of volcanic cycles at Soufriere Hills Volcano,
Montserrat (Flower & Carn, 2015; Nicholson et al., 2013)was employed.
This technique incorporates a fast Fourier transform (FFT) multi-taper
method (MTM) analysis (Thomson, 1982), facilitating the identification
of cycles in datasets where the underlying dynamics of the system are
unknown (Percival & Walden, 1993). Output is generated in the form
of power spectral density (PSD: signal power as a function of frequency)
plots and has been employed in the analysis of a variety of geophysical
data (e.g., Flower & Carn, 2015; Lamb et al., 2014; Nicholson et al., 2013;
Odbert & Wadge, 2009).

In order to assess the significance of cycles, the dynamics of the data
were assessed and determined to display white noise characteristics,
with no significant pattern of decreasing power with increasing fre-
quency (Fig. 1); the latter is indicative of red noise and is common in
natural systems (Mann & Lees, 1996). White noise confidence limits
(95% and 99%) were calculated to facilitate the identification of signifi-
cant cycles (Duchon & Hale, 2012). Limitations exist with respect to
the length of cycles that can be resolved with this technique. Cycles
with periods less than the sampling rate (b1 day) cannot be resolved,
whilst cycles with periods longer than n/4, where n is the length of
the initial time series, do not display sufficient recurrences to distin-
guish them from discrete events within in the data. The final consider-
ation relates to the characteristics of the original data; in this case the
orbital geometry (16-day repeat period) of the satellite platforms
from which the OMI and MODIS measurements were obtained.

PSD plots were generated for each of the 173 phases of volcanic ac-
tivity, with OMI andMODIS data subset into seven categories according
to the criteria shown in Table 2, for a total of 1211 samples relating to
individual eruptive periods with an additional 48 samples from the
analysis of OMI data alone. These PSD plots were then used to identify
cyclic behaviour common to multiple volcanoes, measurement tech-
niques and observation times to assess the impact of non-volcanic
forcing.

3. Results

3.1. OMI row anomaly

A 2.3-day cycle was initially identified as part of a multi-peak PSD
feature attributed to the ORA in OMI data compiled for 24 initial sample
sites (Table 1). PSD plots for data collected after the development of the
ORA display peaks at a frequency of 0.438 cycles day−1 (period of
2.3 days) in 16 of the 24 target volcanoes, with only one (Etna)
displaying a cycle at this frequency both before and after ORA develop-
ment. Two further cycleswere also identified as common features in the
post-ORA PSD plots, at frequencies of 0.124 cycles day−1 (8-day period)
and 0.312 cycles day−1 (3.2 day period), with 19 and 6 sites displaying
statistically significant cycles, respectively. Fig. 1 shows PSD plots
(2009–2013) for three volcanoes where the influence of the ORA is
clearly evident: Pacaya (Guatemala), which exhibits no significant



Fig. 1. Characteristic PSD plots for A. Pacaya, B. Piton de la Fournaise and C. Soufriere Hills
volcano displaying common ORA cycles (0.124, 0.312, and 0.438), and D. PSD output for
Soufriere Hills volcano data treated with 5-point correction.
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cycles in the pre-ORA analysis; Piton de la Fournaise (Réunion), which
displays only noise prior to the ORA; and Soufriere Hills Volcano (SHV,
Montserrat), where significant unrest dominates the pre-ORA analysis
(Flower & Carn, 2015), but due to a decrease in activity at SHV roughly
coincident with the onset of the ORA, subsequent analysis displays sim-
ilar characteristics to Pacaya and Piton de la Fournaise. The significant
volcanic activity at SHV in 2005–2009 also showed cyclicity with fre-
quencies b0.124 cycles day−1 (Flower & Carn, 2015) but despite this
the features, which we posit are the result of the ORA, can clearly be
identified in all three of these locations (Fig. 1).

In order to accurately assess the presence of cyclical variations in
volcanic SO2 emissions using OMI data affected by the ORA, implemen-
tation of an appropriate correction factorwould be necessary to prevent
the dominance of the ORA feature over any naturally generated cycles.
Following the initial identification of this pattern, the OMI SO2 data
were visually assessed to identify the extent and persistence of the
ORA. The 16-day repeat cycle of sun-synchronous satellites such as
Aura and others in the A-Train constellation results in predictable pat-
terns of ORA interference for a particular location. Initially (in 2008–
2011) the location and extent of the ORA in the OMI orbit swath varied,
but since July 2011 some stabilisation has occurred (e.g., http://www.
knmi.nl/omi/research/product/rowanomaly-background.php)
resulting in a reduction in temporal variations. The effect of the ORA
through an Aura orbit cycle has been assessed usingOMImeasurements
of SO2 in the Kilauea (Hawaii) volcanic plume (1st-16th July 2010;
Fig. 2). At Kilauea, SO2 plume dispersion occurs predominantly to the
west under typical trade wind conditions and therefore the ORA has
greatest impact on measured SO2 emissions when located west (down-
wind) of the volcano; andmost significant when the ORA is immediate-
ly west of and/or over Kilauea, obscuring the highest SO2 column
amounts expected in the young volcanic plume. In general the impact
of the ORA at a particular degassing volcano will depend on local vari-
ability in wind direction and volcano placement within the OMI
swath; volcanoes characterized by relatively invariant wind directions
such as Kilauea would be expected to show stronger ORA-induced cy-
clicity in theirmeasured SO2 emissions. Table 3 details the relative effect
of the ORA on Kilauea SO2 observations in a single Aura satellite repeat
cycle (Fig. 2), highlighting the following patterns:

• Two 3-day segments of the orbit cycle (C–E and J–L) involve severe
ORA impacts on alternating days; this is a probable source of the
2.3-day cycle.

• Dayswith negligible (B, F, I) or mild (K, O) ORA impacts display an av-
erage separation equal to the ~3-day cycle.

• The separation between the severely impacted days (i.e., C–J, E–L, N–
E) is most likely the source of the 7-day cycle identified in almost 40%
of the datasets analysed.

To correct for the data gaps produced by the ORA an appropriate
gap-filling methodology is required. Examples of such methodologies
used in other studies include: estimation of SO2 emissions based on
the general dynamics of the system (short-termmean calculation or lin-
ear interpolation; Nicholson et al., 2013); utilisation of a second instru-
ment with similar measurement capabilities (e.g., OMPS): Telling,
Flower, & Carn, 2015), or the use of ground-based remote sensing data
to replacemissing values.Whilst being of value for estimation purposes,
the use of general systemdynamics or alternative instruments increases
uncertainty as none can provide accurate and comparable coincident
measurements with OMI. The deployment of ground-based instrumen-
tation for continuousmeasurement of SO2 emissionswould provide the
appropriate resolution for data replacement, but is not practical for
many of the volcanic targets discussed here.

3.2. Viewing angle induced cyclicity

Following the identification of ORA-induced cycles in the OMI SO2

data, individual periods of volcanic activity were analysed to see if cycles
persisted between locations. When combined with the ORA analysis the
2.3-day cycle surpassed the imposed confidence limits in 39 datasets out
of a total of 117 showing any significant cyclicity (Table 4). MODVOLC
thermal anomalies were analysed for the same periods of unrest at the
32 target volcanoes (Table 1), facilitating comparisonwith the OMI anal-
yses. TIR radiance detected by the MODVOLC system also exhibited the
previously discussed 2.3-day cycle, but by conducting separate analyses
of daytime and night-time MODIS data, we find that the persistence of
the 2.3-day cycle is dependent on observation time. The analyses
summarised in Table 4 indicate that in daytime OMI and MODIS mea-
surements (OMI, AMD, TMD) approximately one-third to half of those
analyses identifying any significant cycles detect a significant signal
with a period of 2.3 days. In contrast, ~75% of the night-time (AMN,

http://www.knmi.nl/omi/research/product/rowanomaly-background.php
http://www.knmi.nl/omi/research/product/rowanomaly-background.php


Fig. 2. Regional maps of daily OMI SO2 data collected over Hawaii, indicating the position and significance of the OMI Row Anomaly generated by variations in viewing angle through a
complete progression of Aura's sun-synchronous orbit. Plots A–P correspond to 1st–16th July 2010, respectively. A triangle indicates the location of Kilauea volcano.
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TMN) and combined (AMA, TMA) MODIS measurements showing any
cyclicity display this cycle. The remaining analyses which display cycles
were dominated by low frequency features generated by volcanic activ-
ity, resulting in suppression of the viewing angle features.

We ascribe this outcome to the increased sensitivity of the night-
timeMODVOLC algorithm (Section 2.2), resulting in greater susceptibil-
ity to the influence of sensor viewing angle on the detected TIR signal
imparted by an increased rate of thermal anomaly detection. A previous
study by Murphy et al. (2013) identified cycles of a similar duration in
MODIS data whilst investigating MODIS and ASTER synergy at Erta
‘Ale (~2 days), Kilauea (2.6 days) and Kliuchevskoi (2.5 days), despite
employing a wavelet analysis technique as opposed to the FFT-MTM
methodology utilised here. The identified cycles were attributed to the
influence of atmospheric phenomena such as cloud cover, resulting in
daily variations in TIR radiance associatedwith otherwise stable sources
of TIR radiation (Murphy et al., 2013). Whilst meteorological factors
could produce this signal in some of the locations analysed here, its con-
sistency on such awidespread scale suggests that an alternative cause is
more likely.

We attribute the persistence of this cycle in OMI and MODIS obser-
vations to a common characteristic of the measurements, namely the
variation in sensor viewing angle during the 16-day Aura, Aqua and
Terra orbit repeat cycles. For example, smaller and/or lower tempera-
ture phenomena, or a hot vent, lava lake or lava dome obscured by cra-
ter walls (e.g., Wooster et al., 1998), may only be detected by MODIS at
nadir (i.e., at peak spatial resolution of 1 × 1 km), with the increased
spatial averaging in the larger off-nadir GIFOV reducing the signal
below the threshold of detection, resulting in an otherwise stable ther-
mal feature seeming to wax and wane throughout the satellite orbit
cycle. At low latitudes there are also gaps between adjacent MODIS or-
bital swaths near the equator; these gaps influence some low latitude
regions more significantly than others and could result in data gaps on



Table 3
Relative effect of the ORA on OMI SO2 measurements at Kilauea volcano, Hawaii during one Aura satellite repeat cycle.

Date (July 2010) Fig. 2 plate Extent of ORA influence on volcanic SO2 detection Overall effect of ORA

1st A Plume dispersion further than 2° west obscured Moderate
2nd B Only far extent of large westerly plumes affected Negligible
3rd C Complete obscuration of the volcano and westerly plume dispersion Severe
4th D Plume dispersion further than 4° west obscured Mild
5th E Complete obscuration of the volcano and general dispersion Severe
6th F Only far extent of large westerly plumes affected Negligible
7th G Plume dispersion above volcano and to the east obscured Moderate
8th H Plume dispersion further than 3° west obscured Moderate
9th I Only far extent of rare easterly plumes would be affected Negligible
10th J Any westerly dispersion obscured Severe
11th K Only far extent of large westerly plumes affected Mild
12th L Complete obscuration of the volcano and general dispersion Severe
13th M Plume dispersion further than 3° west obscured Moderate
14th N The volcano, localised and easterly dispersion obscured Severe
15th O Only far extent of large westerly plumes affected Mild
16th P Plume dispersion to the east obscured Moderate
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alternating days, further enhancing the spectral power associated with
the ~2.3 day cycle. Similar reasoning can be applied to theOMI SO2mea-
surements. Volcanic SO2 plumes covering areas significantly less than
the size of an OMI footprint (13 × 24 km at nadir) would also be subject
to variable spatial dilution effects over an Aura orbit cycle, with the
measured SO2 mass approaching or commensurate with background
noise levels at extreme viewing angles (larger GIFOVs).

4. Discussion

4.1. Cycle characteristics

The strength of the observed cyclic variations in OMI and MODIS
measurements appears to be a function of the latitude of the volcano
in addition to the dominant style of volcanic activity. Fig. 3 depicts the
persistence of the 2.3-day cycle in OMI and MODIS observations, in ad-
dition to the ~3- and ~8-day cycles in OMImeasurements, at each of the
target volcanoes. Tropical volcanoes (i.e., at absolute latitudes of ≤20°)
appear to display greater overall susceptibility to the effects of satellite
viewing angle than those at higher latitudes, which ismost likely the re-
sult of minimal overlap or gaps between orbits (in the case ofMODIS) at
low latitudes. However, there is a subset of tropical volcanoes that dis-
plays little influence of these multi-day cycles (Fig. 3). These volcanoes
are characterized by shorter periods of unrest (average durations of 50–
275 days; Table 1) relative to those showing stronger cyclicity (average
duration of 820+days; Table 1), and hence the number of observations
is likely insufficient for cyclicity to be manifested. Conversely, we note
that the group of volcanoes showing the strongest cyclicity includes
many of the strongest and most persistent global sources of volcanic
SO2 emissions of the past decade, based on OMI SO2 measurements
since 2004 (Carn et al., 2016).

Villarrica shows the strongest influence of themulti-day cycles of all
mid-latitude volcanoes (absolute latitude of 30°–50°), and appears to be
Table 4
Persistence of common identified cycles in MODIS and OMI observations.

Measurement
classification

Total #
phases run

Total # runs with
cycles detected

Total # of runs with
2.3-day cycle detected

AMA 173 102 78
AMD 173 59 25
AMN 173 103 79
TMA 173 106 76
TMD 173 66 34
TMN 173 103 73
Total MODIS 1038 539 365
OMI 221 117 39
Total 1259 656 404
an outlier relative to other volcanoes at similar latitudes (Fig. 3), but fur-
ther analysis reveals that this location shows an ~8-day cycle in all OMI
and MODIS analyses. The presence of this cycle in the MODIS data (the
~8-day cycle is a feature of the ORA and does not appear to be character-
istic of theMODIS datasets analysed here) implies that it is likely a result
of volcanic activity coupledwith satellite viewing geometry producing a
false positive in the record. Specifically, activity at Villarrica since 2004
has been characterized by a lava lake with a small surface area (2–
30 m) residing at variable depths within the summit crater (Witter,
Kress, Delmelle, & Stix, 2004; Palma, Calder, Basualto, Blake, &
Rothery, 2008; Sawyer et al., 2011), whichwould be generally obscured
from view except during near-nadirMODIS overpasses, thus generating
an ~8 day cycle. When the instances of this cycle at Villarrica are re-
moved (Fig. 3; VLR*) the modified analysis is more consistent with
that for Stromboli and Etna, and the overall pattern is a decreasing influ-
ence of the satellite-viewing-angle-induced, 2.3-day cycle with increas-
ing latitude. The most likely reason for this is the convergence of
adjacent sub-satellite orbit tracks at higher latitudes, which effectively
reduces viewing angle variations during an orbit repeat cycle (i.e., the
average distance of a given target from nadir is reduced). In OMI SO2

measurements, an additional factor could be the typically lower wind
Fig. 3. Persistence of common cyclicity (defined as the fraction of all MTM analyses for each
volcano showing a 2.3-, 3- or 8-day cycle) as a function of latitude for all target volcanoes (for
corresponding codes see Table 1). Data points are colour coded based on the average number
of dayswithin the analysed eruptionperiods (redb100days, orangeb300days, yellowb500,
green b750, blue b1000 and purple 1000+ days). Three regions are outlined, indicating:
mid-latitude volcanoes with shorter periods of unrest (50–275 days) which display
minimal cyclicity (green); the strongest influence of the cycles present in low- to mid-
latitude volcanoes with more persistent activity (820+ days; purple); and clustering of
Guatemalan volcanoes despite variations in time-series length (365 vs 1217 days; orange).
The black data point for Villarrica (VLR*) represents a corrected value due to the presence
of volcanic cyclicity at the same frequency as that generated by sensor viewing geometry.



Fig. 4. Effects of data averaging on the PSD output for Aqua daytime MODIS data from
Kilauea eruption episode 58 (July 2007–March 2011) with 95% (yellow) and 99% (red)
confidence limits. A. No correction applied, B. 3-point correction, C. 5-point correction,
D. 7-point correction.
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speeds and lower directional wind shear in the tropics, which limits SO2

plume dispersion across the OMI GIFOV, i.e., the average spatial extent
of volcanic SO2 plumes may be lower in the tropics.

Some clustering of sites displaying similar activity and geographic
location is apparent in Fig. 3; for example, all targets in Guatemala (or-
ange) display similar characteristics despite differences in the number
of MTM runs conducted (2 vs 9) and average length of time-series
(365 vs 1217 days). In OMI SO2 measurements (unlikeMODIS TIRmea-
surements), interference between nearby volcanoes is inevitable as
emissions may drift large distances from the source, and common cy-
clicity in this case may suggest a single dominant SO2 source in the re-
gion affecting all the Guatemalan targets. In a separate study, we have
found that comparison of common cyclicity in OMI SO2 and MODIS
TIR observations in regions with multiple active volcanoes can be used
to identify the dominant SO2 source (Flower, 2015). Comparison of
the cycles identified in OMI SO2 data at Fuego, Pacaya and Santa Maria
(see Supplementary data) indicates the presence of similar cycles at
both Fuego and Santa Maria in 2006 and 2012. Analysis of MODIS data
for these years reveals similar cycles at Fuego, indicating that this was
the dominant source of volcanic SO2 emissions in Guatemala in 2006
and 2012. With the identified contaminated cycles removed from the
Santa Maria analysis the persistence drops from 0.47 to 0.44, which
still maintains the similarities previously identified between the Guate-
malan volcanoes (Fig. 3). Whilst the greater number of MODIS samples
for each location could bias the analysis towards cyclicity inMODIS data,
investigation of the persistence of cycles in both the OMI andMODIS at
Santa Maria following the removal of contaminated signals was 0.44.

4.2. Cycle suppression

Here,we discuss possible strategies tomitigate the effects of induced
cycles on interpretation of time-series satellite observations, and facili-
tate the identification of real trends. The strength of moderate resolu-
tion, LEO satellite instruments such as OMI and MODIS lies in their
ability to provide near-global, daily time series, and hence any correc-
tion factor applied to account for cyclical variabilitywould ideallymain-
tain the original temporal resolution (~1 day) of the data. We therefore
adopt an averaging rather than a binningmethodology tomaintain tem-
poral resolution, and through the averaging procedure we reduce the
significance of high frequency noise that dominated the earlier analyses.
However, this method does result in the suppression of sharp peaks in
emissions and therefore would not be appropriate for analysis of
short-period pulses of SO2 associated with explosive eruptions.

Episode 58 of the ongoing eruption of Kilauea, Hawaii (July 2007–
March 2011) was used as a test case for correction techniques, as TIR
anomalies persisted throughout the MTM analysis of each of the
MODIS datasets (Aqua and Terra day- and night-time data). Three
methods of data pre-processing were trialled and then analysed with
the original MTMmethodology;

• Each data point n recalculated as 3-point running average (n−1 to
n+1)

• Each data point n recalculated as 5-point running average (n−2 to
n+2)

• Each data point n recalculated as 7-point running average (n−3 to
n+3)

The averaging of each datum with adjacent values maintains the
total number of data points and preserves the general dynamics of the
time series, whilst reducing the day-to-day variability produced by the
sensor viewing angle. Due to the suppression of all cycles in the Aqua
MODIS daytime analysis at frequencies below the peak at
0.438 cycles day−1 (Fig. 4a), we conducted detailed analysis to assess
the impact of the data averaging on the identification of cycles in this
dataset. Unsurprisingly, the 3-point average resulted in the least
amount of information loss, but it was unable to suppress the viewing
angle effect in all of the analyses, with Aqua MODIS daytime data still
displaying a significant peak at 0.438 cycles day−1 (Fig. 4b). However,
as a result of the suppression of signal power at other frequencies,
three peaks exceed designated confidence limits at frequencies of
0.004, 0.036 and 0.125 cycles day−1 (periods of ~250, 27 and 8 days;
Fig. 4b). The 5-point average (Fig. 4c) suppressed the 2.3-day cycle
below the imposed confidence limits and reduced the significance of
the 8-day cycle, whilst the longer period cycles appear unaffected in ei-
thermagnitude or distributionwhen compared to the3-point averaging
method. Use of a 7-point average resulted in complete suppression of
the 2.3-day cycle whilst preserving the ~250- and 27-day cycles (Fig.
4d), but the increased number of samples incorporated into the averag-
ing procedure also resulted in suppression of the 8-day cycle. Based on
these results, the 5-point averaging technique was chosen for applica-
tion to each of the trial datasets for the Kilauea eruption as it provided
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an appropriate reduction in the identified artefacts (Fig. 4), with the
least impact on the original data. We therefore recommend the inclu-
sion of a 5-point averaging pre-processing step on raw data obtained
from LEO satellite instruments to mitigate the impact of the 2.3-
day cycle generated by viewing angle variations on time-series analysis.
Clearly, application of this technique precludes identification of cycles
with equal or shorter period than the averaging window and leads to
a drop off of PSD signal towards the frequency corresponding to the
number of days averaged (e.g., 5 days = 0.2 cycles day−1).

As with the ORA feature in OMI measurements, the presence of the
2.3-day cycle in MODIS data can suppress natural cycles in the data re-
cord due to overwhelming PSD at this frequency. Fig. 5 displays the re-
sult of MTM analysis of MODIS data for episode 58 of the ongoing
eruption of Kilauea. In general, the signal strength and therefore PSD
limits in the Aqua daytime data are considerably lower than those in
the Aqua night-time or either Terra datasets. This is due to the
1:30 pm timing of the daytime Aqua satellite overpass, resulting in
greater interference from features such as afternoon convective clouds
than in the morning Terra overpass. The presence of cloud cover can
Fig. 5. Comparison of PSD plots computed with uncorrected MODIS data and the selected gap
(yellow) and 99% (red) confidence limits: A. Aqua daytime (uncorrected), B. Aqua daytime (
pre-processing), E. Terra daytime (uncorrected), F. Terra daytime (5-point pre-processing), G.
obscure thermal anomalies, reducing the total power of the samples
containedwithin theAqua daytime dataset and reducing the overall sig-
nal observed within the PSD output. In analyses with no data pre-pro-
cessing, we find that the 2.3-day cycle dominates each PSD plot, but
longer period cycles (~125, ~56 days) do exceed the imposed signifi-
cance levels to varying degrees in multiple datasets (AMN, TMD, TMN:
Fig. 5c, e, g). However, subtler variations are masked by the 2.3-
day cycle (AMD: Fig. 5a) as shown by the 5-point averaged data (Fig.
5b, d, f, h). Table 5 details all cycles identified in the original datasets
and the 5-point averaging analyses in Fig. 5.

The suppression of the 8-day cycle by the 5-point averagingmethod
suggests the feasibility of its use for correction of ORA-influenced OMI
SO2 data, and therefore a trial was conducted on the post-ORA OMI
dataset obtained from SHV (Fig. 1c). Application of this correction sup-
pressed the ORA-induced peaks (0.124, 0.312, 0.438 cycles day−1) and
revealed four cycles in the resulting MTM output equating to periods
of ~400-, 181-, 74- and 59-days (Fig. 1d). Cycles at periods of 181-,
74- and 54–58-days were identified in the analysis of OMI and/or
MODIS data for SHV in 2005–2009 (Flower & Carn, 2015), and were
-filling methodology for Kilauea eruption episode 58 (July 2007–March 2011) with 95%
5-point pre-processing), C. Aqua night-time (uncorrected), D. Aqua night-time (5-point
Terra night-time uncorrected), H. Terra night-time (5-point pre-processing).



Table 5
Significant cycles (exceeding 95% and 99% confidence limits) identified at Kilauea in the original MODIS analysis and 5-point corrected data series.

Measurement characteristics

Cycle period (days)

No correction applied 5-point correction applied

99% 95% 99% 95%

Aqua daytime 2.3 – 256, 200, 133, 105 80, 29
Aqua night-time 500, 200, 133, 105, 2.3 78 500, 200, 133, 105 79
Terra daytime 665, 330, 220, 143, 2.3 104 500, 200, 143 95
Terra night-time 435, 200, 109, 90, 2.3 – 500, 200, 133, 100, 80 –
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linked to a combination of volcanic and meteorological factors. The
identification of these cycles in both pre-ORA and corrected post-ORA
data indicates that application of the averaging procedure preserves
volcanic or meteorological features in the time-series (provided that
any related cycles have periods longer than the averaging window)
whilst effectively reducing the influence of instrumental (e.g., viewing
angle) effects. Thenumber of data points required for the averagingpro-
ceduremay varywith geographic location,with targets in equatorial re-
gionsmore susceptible to the effects of variations in viewing angle (due
to the single daily overpass) than those at higher latitudes (where adja-
cent orbits overlap).
5. Conclusion

Whilst OMI still offers the greatest sensitivity to lower tropospheric
volcanic SO2 plumes of any operational satellite instrument, the devel-
opment of the ORA can have an impact on time-series analysis of OMI
SO2 data, particularly in equatorial regions, by introducing spurious cy-
clicity into the observations. Here, we have characterized the impact of
the ORA on time-series analysis of OMI SO2 measurements collected
since 2008 at active volcanoes, and have demonstrated how these im-
pacts can be effectivelymitigated using a straightforward short term av-
eraging technique. For PSDanalysis of OMI SO2 data affected by theORA,
we recommend application of 5-point averaging to suppress the 8-, 3.2-
and 2.3-day cycles associatedwith this anomaly. This correction permits
more accurate assessment of cyclic patterns in volcanic SO2 emissions in
post-ORA data. In some cases, PSD peaks can be assessed and accounted
for during interpretation of time-series analysis output, but more subtle
cyclic behaviour at volcanoes will be masked by this feature as shown
by the post-ORA analysis of data from Soufriere Hills Volcano.

Through power spectral density estimation of 1259 time-series,
compiled from OMI SO2 and MODIS TIR data for 32 persistently active
volcanoes, a common signal (0.438 cycles day−1; 2.3 day period) was
identified in 61% of datasets displaying any cycles (32% of all targets).
This cycle appears most prevalent in night-time MODIS data, with 74%
of targets displaying these characteristics. Whilst volcanic cycles could
develop at this frequency, based on the persistence of this cycle in mul-
tiple locations irrespective of the style of volcanic activity (i.e.,
degassing, effusive, explosive, dome-forming etc.), we attribute this fea-
ture to cyclic variations in sensor viewing angle over the course of LEO
satellite repeat cycles. The sensor viewing angle determines the size of
the GIFOV, over which the signal associated with sub-pixel sized volca-
nic plumes or high-temperature features is averaged; hence the impacts
described here should be limited to sub-pixel scale phenomena. Fur-
thermore, the presence and strength of such cycles in time-series satel-
lite observations could also be used as evidence for the sub-pixel spatial
scale of a target. A 5-point averaging correction procedure was devel-
oped and trialled on theMODIS data from Kilauea, and was found to re-
duce the impact of the 2.3-day cycle, permitting identification of cycles
which were otherwise obscured by its presence. The requirement for
data averaging imposes limits on the length of natural cycles that can
be confidently identified in moderate resolution satellite observations
from polar-orbiting spacecraft.
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