
Software Impacts 15 (2023) 100459

B

(

Contents lists available at ScienceDirect

Software Impacts

journal homepage: www.journals.elsevier.com/software-impacts

Original software publication

PL-kNN: A Python-based implementation of a parameterless 𝑘-Nearest
Neighbors classifier
Danilo Samuel Jodas a,∗, Leandro Aparecido Passos b, Ahsan Adeel b, João Paulo Papa a

a São Paulo State University, Bauru SP, Brazil
b School of Engineering and Informatics, University of Wolverhampton, UK

A R T I C L E I N F O

Keywords:
Machine learning
𝑘-Nearest Neighbors
Classification
Clustering
Python

A B S T R A C T

This paper presents an open-source implementation of PL-kNN, a parameterless version of the 𝑘-Nearest
Neighbors algorithm. The proposed model, developed in Python 3.6, was designed to avoid the choice of
the 𝑘 parameter required by the standard 𝑘-Nearest Neighbors technique. Essentially, the model computes the
number of nearest neighbors of a target sample using the data distribution of the training set. The source
code provides functions resembling the Scikit-learn methods for fitting the model and predicting the classes of
the new samples. The source code is available in the GitHub repository with instructions for installation and
examples for usage.

Code metadata

Current code version 1.0
Permanent link to code/repository used for this code version https://github.com/SoftwareImpacts/SIMPAC-2022-275
Permanent link to Reproducible Capsule https://codeocean.com/capsule/6555988/tree/v1
Legal Code License MIT License.
Code versioning system used git
Software code languages, tools, and services used Python
Compilation requirements, operating environments & dependencies Python ≥ 3.6, numpy package
If available Link to developer documentation/manual
Support email for questions danilojodas@gmail.com

1. Introduction

The main challenges in machine learning tasks regard the proper
selection of the prediction model and the further optimization of its
hyperparameter values that properly fit the data distribution [1]. Re-
garding the latter aspect, one can notice the computational cost of
seeking the hyperparameter values that improve the model’s accuracy
and prediction capacity. Depending on the model, several hyperparam-
eters must be considered in the optimization procedure, thus leading
to time-consuming efforts that may increase according to the dataset

The code (and data) in this article has been certified as Reproducible by Code Ocean: (https://codeocean.com/). More information on the Reproducibility
adge Initiative is available at https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals.
∗ Corresponding author.
E-mail addresses: danilojodas@gmail.com (D.S. Jodas), l.passosjunior@wlv.ac.uk (L.A. Passos), ahsan.adeel@deepci.org (A. Adeel), joao.papa@unesp.br

J.P. Papa).

size [2,3]. For example, Random Forest, Support Vector Machines, and
𝑘-Nearest Neighbors (𝑘-NN) [4] rely on some hyperparameter values
for classification and regression tasks.

The 𝑘-Nearest Neighbors (𝑘-NN) is a simple model that relies on
the nearest neighbors concept. Firstly, it selects the 𝑘 training samples
close to the test instance. In classification tasks, the process continues
by assigning the majority class determined by voting from the nearest
neighbors of the target sample. In regression tasks, the target sample
receives the average value computed from the nearest neighbors. Since
it is deterministic in its conception, 𝑘-NN produces the same results
https://doi.org/10.1016/j.simpa.2022.100459
Received 29 November 2022; Received in revised form 14 December 2022; Accepted 14 December 2022

2665-9638/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.simpa.2022.100459
https://www.journals.elsevier.com/software-impacts
http://www.journals.elsevier.com/software-impacts
http://crossmark.crossref.org/dialog/?doi=10.1016/j.simpa.2022.100459&domain=pdf
https://github.com/SoftwareImpacts/SIMPAC-2022-275
https://codeocean.com/capsule/6555988/tree/v1
mailto:danilojodas@gmail.com
https://codeocean.com/
https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals
mailto:danilojodas@gmail.com
mailto:l.passosjunior@wlv.ac.uk
mailto:ahsan.adeel@deepci.org
mailto:joao.papa@unesp.br
https://doi.org/10.1016/j.simpa.2022.100459
http://creativecommons.org/licenses/by/4.0/


D.S. Jodas, L.A. Passos, A. Adeel et al. Software Impacts 15 (2023) 100459
regardless of the number of iterations. The result’s accuracy may differ
depending on the number of neighbors specified by the hyperparameter
𝑘. Usually, a low number is selected empirically. Still, a fine-tuning pro-
cedure might be necessary to find the best value for 𝑘 that sets a correct
number of neighbors for specific data distribution, thus attaining more
accurate results. Conversely, the computational cost tends to rise as the
size of the data increases and becomes more complex.

To address the hyperparameter selection for the 𝑘-NN algorithm,
we proposed a method to sidestep the setting of the 𝑘 value in our
previous study [5]. The proposed approach, called PL-kNN, computes
the proper number of neighbors for predicting the test samples. Unlike
the standard 𝑘-NN, which uses a fixed value for 𝑘, each sample’s
number of neighbors is different depending on the data distribution.
Moreover, the implementation of the method is straightforward and
adaptable to any programming language, although it was developed
using Python 3.6 in this work.

2. Source-code design

Let  = {𝑦1, 𝑦2, 𝑦3,… , 𝑦𝑛} be the set of classes considered in the
assessed dataset, where 𝑦𝑖 represents the 𝑖th class. Also, let  =
{𝒙1,𝒙2,𝒙3,… ,𝒙𝑚} be the set of samples of the dataset represented by a
feature vector denoted as 𝑥𝑗 ∈ 𝑅𝑚, being 𝑥𝑗 the feature vector of the 𝑗th
sample. Each sample 𝑥𝑗 is assigned to a class 𝑦𝑖 such that the pair (𝑥𝑗 , 𝑦𝑖)
is used in the subsequent training and testing of the classifier. Formally
speaking, this step involves partitioning the samples such that  =
1 ∪ 2 and 1 ∩ 2 = ∅, where 1 and 2 denote the training and testing
sets, respectively. First, the proposed method divides the training data
1 into 𝑛 clusters according to its number of classes in 1, where 1 is
the set of labels of the training instances in 1. Afterward, we seek the
cluster’s center close to the test data 𝑡 ∈ 2. Then, the model selects the
nearest neighbors using a semicircle computed as the distance between
the test sample and the closest cluster’s center. Finally, we determine
the class 𝑠 of 𝑡 as the class with the higher frequency among all nearest
neighbor samples. This approach is effective when instances of different
classes are not properly separated in the data distribution (see the
examples illustrated in Fig. 1).

The proposed library was developed in Python 3.6 using only the
NumPy package for numerical operations. The setup is simple and com-
patible with the newest release of the Python programming language.
The main file is pl_nn/pl_nn.py in the GitHub repository, which imple-
ments the class of the PL-kNN model. Essentially, the most important
functions of the class are described as follows:

• fit: it performs the training stage of the model. In summary, it
receives the training samples and the respective labels in order to
determine the centers of the classes;

• predict: it receives a list with the test samples to be predicted.
Essentially, it seeks the nearest neighbors using a semicircle com-
puted as the distance between the test sample under analysis and
its nearest class center determined in the training phase of the
model. Afterward, the test sample receives the class computed
from a weighted majority voting from those nearest neighbor’s
instances (see Jodas et al. [5] for more details).

In addition to the methods, the class also contains the following
attributes:

• X_train: it holds the samples of the training set;
• classes: it stands for the label of each class;
• centers: it represents the samples that stand for the centers of

each class distribution.

Fig. 1 illustrates how PL-kNN selects the neighbors of a test sam-
ple considering a synthetic dataset composed of 100 samples and 2
features. In both cases, it is possible to notice the correct neighbors
selected for each test sample regarding the complexity of the data
distribution and the compatibility of the classes of the neighbor’s

Fig. 1. Illustration of the nearest neighbors selected for the test sample depicted as
the purple dot: (a) A test sample belonging to class 0; (b) A test sample belonging
to class 1. The selected nearest neighbors are the dots with black contours inside the
circle computed as the distance between the test sample and the center of the data
distribution. The green dot stands for the data distribution center. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

3. Software impacts

The proposed implementation aims to promote additional research
in designing classifiers that circumvent the necessity for hyperparam-
eter definition, like the Optimum-Path Forest classifier proposed by
Papa et al. [6]. We selected 𝑘-NN due to its deterministic behavior and
simplicity for implementation. In the previous study [5], we reported
several improvements attained by the PL-kNN model compared to the
baseline 𝑘-NN algorithm optimized using a hyperparameter optimiza-
tion procedure. The proposed model achieved the best results in seven
out of eleven datasets and statistical similarity in two of them compared
to the best-performing algorithm. Using a simple approach, PL-kNN
is easily adaptable to other programming languages and customizable
to include a set of functionalities that allows the exploitation of the
prediction behavior. Such an approach is essential to assess the model
results and the data distribution complexity concerning the context
under consideration. Furthermore, the Python implementation is de-
signed to provide convenience and integration with other frameworks.
The proposed design is deployable into some objects of the Scikit-learn
package, like a sequence of processes assembled by the Scikit-learn
pipeline class. It may be helpful while testing several classifiers and
different settings of parameters.

4. Conclusions and future works

The proposed library is an easy-to-use implementation that re-
sembles the Scikit-learn package’s functions concerning the model’s
training and calling of new predictions. Due to its simplicity, re-
searchers and developers may exploit its functionalities and use or
extend the code for their own investigation.

At the present stage of this work, the provided implementation
supports the object’s instantiation and calling of its function to train
and test the model’s performance. Moreover, the source code is only
designed for classification purposes; therefore, we intend to extend
the source code implementation for regression tasks in future works.
Improvements in the neighbors’ selection are also expected to identify
the cases where more neighboring samples are required to increase the
prediction accuracy.

CRediT authorship contribution statement

Danilo Samuel Jodas: Methodology, Software, Writing – original
draft. Leandro Aparecido Passos: Methodology, Writing – original
draft. Ahsan Adeel: Writing – review & editing. João Paulo Papa:
samples with the class assigned to each test instance. Funding acquisition, Supervision, Writing – review & editing.

2



D.S. Jodas, L.A. Passos, A. Adeel et al. Software Impacts 15 (2023) 100459
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The authors are grateful to FAPESP, Brazil grants #2013/07375-0,
#2014/12236-1, #2017/02286-0, #2018/21934-5, #2019/07665-4,
and #2019/18287-0, Engineering and Physical Sciences Research Coun-
cil (EPSRC), United Kingdom grant EP/T021063/1, CNPq, Brazil grants
#307066/2017-7, and #427968/2018-6, and Petrobras, Brazil grant
#2017/00285-6.

References

[1] Li Yang, Abdallah Shami, On hyperparameter optimization of machine learning
algorithms: Theory and practice, Neurocomputing 415 (2020) 295–316.

[2] Xianping Du, Hongyi Xu, Feng Zhu, Understanding the effect of hyperparameter
optimization on machine learning models for structure design problems, Comput.
Aided Des. 135 (2021) 103013.

[3] Jia Wu, SenPeng Chen, XiYuan Liu, Efficient hyperparameter optimization through
model-based reinforcement learning, Neurocomputing 409 (2020) 381–393.

[4] Pádraig Cunningham, Sarah Jane Delany, K-nearest neighbour classifiers - a
tutorial, ACM Comput. Surv. 54 (6) (2021).

[5] Danilo Samuel Jodas, Leandro Aparecido Passos, Ahsan Adeel, João Paulo Papa,
PL-kNN: A Parameterless Nearest Neighbors Classifier, in: 2022 29th International
Conference on Systems, Signals and Image Processing, Vol. CFP2255E-ART,
IWSSIP, 2022, pp. 1–4.

[6] J.P. Papa, A.X. Falcão, C.T.N. Suzuki, Supervised pattern classification based on
optimum-path forest, Int. J. Imaging Syst. Technol. 19 (2) (2009) 120–131.
3

http://refhub.elsevier.com/S2665-9638(22)00143-9/sb1
http://refhub.elsevier.com/S2665-9638(22)00143-9/sb1
http://refhub.elsevier.com/S2665-9638(22)00143-9/sb1
http://refhub.elsevier.com/S2665-9638(22)00143-9/sb2
http://refhub.elsevier.com/S2665-9638(22)00143-9/sb2
http://refhub.elsevier.com/S2665-9638(22)00143-9/sb2
http://refhub.elsevier.com/S2665-9638(22)00143-9/sb2
http://refhub.elsevier.com/S2665-9638(22)00143-9/sb2
http://refhub.elsevier.com/S2665-9638(22)00143-9/sb3
http://refhub.elsevier.com/S2665-9638(22)00143-9/sb3
http://refhub.elsevier.com/S2665-9638(22)00143-9/sb3
http://refhub.elsevier.com/S2665-9638(22)00143-9/sb4
http://refhub.elsevier.com/S2665-9638(22)00143-9/sb4
http://refhub.elsevier.com/S2665-9638(22)00143-9/sb4
http://refhub.elsevier.com/S2665-9638(22)00143-9/sb5
http://refhub.elsevier.com/S2665-9638(22)00143-9/sb5
http://refhub.elsevier.com/S2665-9638(22)00143-9/sb5
http://refhub.elsevier.com/S2665-9638(22)00143-9/sb5
http://refhub.elsevier.com/S2665-9638(22)00143-9/sb5
http://refhub.elsevier.com/S2665-9638(22)00143-9/sb5
http://refhub.elsevier.com/S2665-9638(22)00143-9/sb5
http://refhub.elsevier.com/S2665-9638(22)00143-9/sb6
http://refhub.elsevier.com/S2665-9638(22)00143-9/sb6
http://refhub.elsevier.com/S2665-9638(22)00143-9/sb6

	PL-kNN: A Python-based implementation of a parameterless k-Nearest Neighbors classifier 
	Introduction
	Source-code design
	Software impacts
	Conclusions and future works
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	References


