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Abstract—Modeling uncertainty has been an active and

important topic in the fields of data-driven modeling and 

machine learning. Uncertainty ubiquitously exists in any data 

modeling process, making it challenging to identify the optimal 

models among many potential candidates. This article proposes 

an uncertainty-informed method to address the model selection 

problem.  The performance of the proposed method is evaluated 

on a dataset generated from a complex system model. The 

experimental results demonstrate the effectiveness of the 

proposed method and its superiority over conventional 

approaches. This method has minimal requirements for the 

length of training data and model types, making it applicable for 

various modeling frameworks. 

I. INTRODUCTION

The typical process of data-driven modeling involves 
several stages including data collection, preprocessing, model 
training and model validation. For most data-driven modeling 
methods, it is often necessary to define some training 
parameters prior to model training. For instance, when building 
a neural network model, parameters such as the number of 
epochs, the estimation/optimization algorithm, evaluation 
metrics, and network structure (including layer types, number 
of layers, and neurons per layer) must be specified first [1], [2]. 
For some regression-based models, such as the Nonlinear 
AutoRegressive Moving Average with eXogenous inputs 
(NARMAX) model [3], [4], the determination of model 
structure and the generation of candidate linear and nonlinear 
model terms are essential.  The following processes such as the 
selection of important model terms, the determination of model 
size  (i.e., the number of terms), model validity test, and model 
performance evaluation plays an important and central role [5]. 
Due to these factors, for a given data modeling task, there could 
be a vast number of candidate solutions. In practice it is always 
challenging to effectively identify the best model or the best set 
of models among these candidates. 

 Numerous model selection and model size determination 
methods have been introduced and widely applied in data 
modeling, system identification, and machine learning. Among 
the popular ones are the Akaike Information Criterion (AIC) 
[6] and Bayesian Information Criterion (BIC) [7]. These
criteria aim to find a balance between model performance and

complexity by incorporating measures for both. They have 
found extensive use across various applications [8], [9], [10]. 
Additionally, methods such as prediction error sum of squares 
(APRESS) [11] were developed to address model selection 
challenges in complex nonlinear system identification, which 
have been proven effective in diverse fields. Cross-validation 
is another widely utilized technique, particularly suitable for 
black-box models such as neural networks [12], [13]. 

In recent years, uncertainty analysis has become an 
important and hot topic in data modeling fields [14], [15]. 
When strong uncertainties exist, models can become 
unreliable, particularly when predicting peak values in some 
specific applications, e.g., space weather prediction [16]. This 
can incur substantial financial costs in certain sectors where 
model risks cannot be accurately assessed. Consequently, 
various methods have been devised to quantify uncertainties in 
data-driven modeling. Uncertainties can arise in model 
structure, parameters, and predictions [16]. The evaluation of 
prediction uncertainties is particularly crucial for time series 
prediction tasks. One common approach is to develop methods 
that generate prediction bands, offering a visual representation 
of prediction uncertainties. For example, a two-stage support 
vector machine has been proposed to predict settlement 
occurrences and evolution while quantifying model 
uncertainties [17]. A Monte Carlo-based approach has been 
devised to quantify uncertainties in recurrent neural networks 
[18]. The Cloud-NARX model has been developed to predict 
space weather with a prediction interval, aiding in quantifying 
uncertainties [16]. During the modelling process of the above 
methods, a bootstrapping method is usually employed, and a 
huge number of models are generated from sub-datasets. There 
is a common challenge in quantifying prediction uncertainty: 
how to effectively determine a set of best and most 
representative models from a large number of candidate 
models generated from uncertain data. There is a need to 
develop a new method that can handle all candidate models 
simultaneously and identify the best ones. Building on this 
observation, this article proposes a new uncertainty informed 
model selection method, for addressing the model selection 
problem where uncertainty quantification is required during 
the modeling process. 

The main contributions of this article are as follows: 1) The 
proposed method can be applied to identify the best models in 
scenarios where multiple sub-datasets and associated models 
exist. 2) The proposed method leverages uncertainty 
quantification results from all sub-datasets and incorporates 
information for model selection. 3) The proposed method can 
be integrated into various data-driven modeling frameworks, 
such as neural networks and regression models. 
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The remainder of the article is below. Section 2 reviews the 
relevant methods. Section 3 introduces the proposed methods. 
Experimental results are presented in section 4. Finally, the 
work is concluded in section 5.  

II. RELEVANT METHODS 

A. Overview of the data modelling process 

Given a system, let its input matrix and output vector be 𝑿 
and 𝒚 respectively as follows:     

𝑿  = [ 𝑥1 (1) 𝑥2 (1)𝑥1 (2) 𝑥2 (2) … 𝑥𝑀 (1)𝑥𝑀 (2)⋮ ⋱ ⋮𝑥1 (𝑁) 𝑥2 (𝑁) … 𝑥𝑀 (𝑁)]               (1) 

𝒚 = [𝑦  (1)𝑦  (2):𝑦  (𝑁)]                                   (2) 

where the 𝑚 -th column (𝑚 = 1,2, … ,𝑀)  is the 𝑚 -th input 
vector, and 𝑁 is the number of data samples. The modelling 
task is to establish a mathematical model, denoted by 𝑓(∙), to 
describe the relationship between 𝑿 and 𝒚, as below:  𝒚 = 𝑓  [𝒙  , 𝜽 ] + 𝒆                                 (3) 

where 𝜽  is the vector of estimated parameter and 𝒆  is the 
model residual vector. Specifically, when modelling a dynamic 
system, the model can be written as:  𝑦  (𝑡) = 𝑓  [𝑦(𝑡 − 𝑑)  , 𝑦(𝑡 − 𝑑 − 1)  , 𝑦(𝑡 − 𝑑 −2)  , … , 𝑦(𝑡 − 𝑑 − 𝑛𝑦)  , 𝑥1(𝑡 − 𝑑 − 1)  , 𝑥1(𝑡 − 𝑑 −1)  , … , 𝑥1(𝑡 − 𝑑 − 𝑛𝑥)  , 𝑥𝑀(𝑡 − 𝑑 − 1)  , 𝑥𝑀(𝑡 − 𝑑 −1)  , … , 𝑥𝑀(𝑡 − 𝑑 − 𝑛𝑥)  , 𝜽 ]                                 (4) 

where 𝑡 is the time stamp;  𝑑 is the time delay between the 
input and output; 𝑛𝑥  and 𝑛𝑦  are the maximum time lags in 
inputs and output, respectively.  

The approximation accuracy of the actual system model 𝑓 
can be determined by many factors, including the model type 
and model structure used to represent 𝑓 , the model training 
process and the data quality used for model training. Taking 
the Nonlinear autoregressive (NARX) model as an example, 
where polynomials are commonly employed as the basis 
functions to build models, the initial full model can usually be 
represented as [3], [4]:  𝒚 = ∑ 𝜃𝑖𝑃𝑖=1 𝝋𝑖 + 𝒆                            (5) 

where 𝝋𝑖 's (𝑖 = 1,2, … , 𝑃) are the derived model terms, 𝜃𝑖 's (𝑖 = 1,2, … , 𝑃)  are the estimated parameters, and 𝒆  is the 
model residual. Following the procedure in [19] and [20], the 
candidate model terms can be generated first, and then a term 
selection method called Orthogonal Forward Regression 
(OFR) algorithm can be used to identify the most crucial model 
terms in a stepwise manner. Prior to this process, the time 
delay, nonlinear degree, and maximum time lags should be 
properly defined. The various combination of these 
hyperparameters can lead to a large number of candidate 
models, denoted as 𝑓1, 𝑓2, … , 𝑓𝑃. Sometimes, the number 𝑃 can 
be extremely large, making it challenging to identify the best 
models among these candidates. Model size determination 
(i.e., the number of model terms) is important, as having too 

many model terms inevitably increases the model complexity 
and potentially lead to overfitting. Conversely, having too few 
model terms can result in poor model performance. Therefore, 
some model selection criteria are typically applied to identify 
the optimal number of terms in the final model. 

B. Review of model selection criteria 

The Akaike Information Criterion (AIC) is a commonly 
used model selection method [6]. It can be calculated using the 
formula: 𝐴𝐼𝐶 = −2 ln(𝐿) + 2𝑝                           (6) 

where 𝐿  is the likelihood based on the given data, and 𝑝 
represents the number of parameters in the model. Another 
similar approach is the Bayesian Information Criterion (BIC) 
[7], calculated as:  𝐵𝐼𝐶 = −2 ln(𝐿) + 𝑝 × 𝑙𝑛(𝑁)                 (7) 

where 𝑁  is the sample size. More recently, a modified 
generalized cross validation criteria called adjustable 
prediction error sum of squares (APRESS) has been developed 
and used in modeling the NARMAX model [11]. It is 
calculated as 𝐴𝑃𝑅𝐸𝑆𝑆 = [ 11−𝐶(𝑝,𝛼)𝑁 ]2 × 𝑀𝑆𝐸(𝑝)                (8) 

where the component [1/(1 − 𝐶(𝑝,𝛼)𝑁 )]2  is a penalty function 

for adding more teams, 𝛼 is a turning parameter, and 𝑀𝑆𝐸(𝑝) 
is the mean square error. Each of the three criteria consists of 
two components: one for measuring the error and another for 
penalizing additional model terms. In the AIC criterion, the 
component −2 ln(𝐿) measure the model ability to explain the 
data, while the component 2𝑝 serves as a penalty for adding 
more model terms. Therefore, the model with the lowest AIC 
is regarded as the optimal choice. The distinction between AIC 
and BIC lies in the penalty component. With a more substantial 
penalty for model terms, BIC adopts a more conservative 
approach when determining the number of terms. 

Although these criteria are effective in many cases, they 
cannot be directly applied to modeling problems involving 
huge number of sub-datasets, especially when a bootstrapping 
method is employed to quantify model uncertainty. In such 
scenarios, multiple datasets are typically utilized to derive the 
distribution of estimated model parameters, generate 
prediction intervals, and establish a fuzzy representation to 
describe model uncertainty [16], [17], [18]. Assuming that 
there are 𝐾 sub-datasets and the models constructed for each 
sub-dataset have different model terms, effectively leveraging 
the information from all sub-datasets and associated models 
using traditional information criteria becomes challenging. For 
instance, applying the AIC criteria may result in 𝐾 × 𝑃 values 
being calculated. However, each of these values just reflects 
the information of individual models and cannot offer a 
comprehensive assessment of model performance across all 
subsets. With this in mind, we aim to develop a new model 
selection method to identify the optimal number of model 
terms in such situations. 
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III. THE PROPOSED METHOD 

The proposed method consists of several stages, as 
illustrated in Fig. 1.  The details are outlined below. 

A.  Bootstrap 

In this stage, a bootstrap procedure is employed to generate 
several sub-datasets from the original dataset. Assuming that 𝐾  sub-datasets have been generated, the input and output 
variables can be represented as follows: 

𝑿  = [  
  𝑥1(𝑘) (1) 𝑥2(𝑘) (1)𝑥1(𝑘) (2) 𝑥2(𝑘) (2) … 𝑥𝑀(𝑘) (1)𝑥𝑀(𝑘) (2)⋮ ⋱ ⋮𝑥1(𝑘)(𝑁′) 𝑥2(𝑘)(𝑁′) … 𝑥𝑀(𝑘)(𝑁′)]  

  
            (9) 

𝒚 = [  
 𝑦(𝑘) (1)𝑦(𝑘) (2):𝑦(𝑘)(𝑁′)]  

 
                                  (10) 

where 𝑘 = 1,2, … , 𝐾  is the index of sub-datasets. This step 
aims to extract uncertainties within the data and build the 
groundwork for further uncertainty analysis. Typically, the 
data size of the sub-datasets 𝑁′  is smaller than that of the 
original data 𝑁, resulting in each sub-dataset having different 
data samples. Consequently, the model terms and estimated 
parameters of each model differ, and this information can be 
analyzed to quantify uncertainty. 

B. Individual model identification  

In this stage, individual models will be constructed based 
on the 𝐾 sub-datasets, resulting in 𝐾 sets of models denoted as 𝑭(1), 𝑭(2), 𝑭(3), … , 𝑭(𝐾), with each set containing a variety of 
candidate models having different numbers of model terms 𝑭(𝑘): {𝑓1(𝑘), 𝑓2(𝑘), … , 𝑓𝑃(𝑘)} . Consequently, a total number of 𝑃 × 𝐾 models will be established, and the model selection task 
is to identify the optimal number of the model terms. 

A brief overview of the steps involved in constructing the 
NARX model is as below. More comprehensive information 
can be found in [5], [19], [20]. Initially, a set of candidate 
model terms is established for each sub-dataset. For instance, 
the candidate terms for the 𝑘-th dataset are denoted as: 

{𝝋1(𝑘), 𝝋2(𝑘) … ,𝝋𝑃(𝑘)}                                (11) 

where 𝑃 is the total number of candidate terms. Next, the OFR 
algorithm is employed to measure the Error Reduction Ratio 
(ERR) and identify the most significant terms for each sub-
model. Assuming that 𝑃’ terms are selected and incorporated 
into the final model, the models for the 𝑘-th sub-dataset can be 
represented as: 𝒚(𝑘) = 𝑓𝑃′(𝑘){𝝋𝑙1(𝑘), 𝝋𝑙2(𝑘) … ,𝝋𝑙𝑃′(𝑘)} + 𝒆(𝑘)               (12) 

where 𝑙1, 𝑙2, … 𝑙𝑃′ are the indices of the selected model terms. 
Note that there the number of terms 𝑃’ can range from 1 to 𝑃 if 
no model selection is used to identify the optimal value. Thus, 
the candidate dictionary comprises a total of 𝑃 × 𝐾  models, 
and the objective of the model selection criteria is to determine 
the optimal value 𝑃’.  
C. Model uncertainty quantification 

In this stage, we apply certain methods to quantify the 
uncertainty in model predictions based on the established 
models. For the models with 𝑃’ model terms from the 𝑘-th sub-
dataset, the model predictions can be calculated as follows:  𝒚𝑝𝑟𝑒 𝑃′(𝑘) = 𝑓𝑃′(𝑘)(𝝋𝑙1(𝑘), 𝝋𝑙2(𝑘) … ,𝝋𝑙𝑃′(𝑘))              (13) 

Collectively, these predictions constitute a prediction 
matrix for all the sub-datasets when the number of terms is 𝑃’.  𝒚𝑝𝑟𝑒 𝑃′ = [𝒚𝑝𝑟𝑒 𝑃′(1) 𝒚𝑝𝑟𝑒 𝑃′(2), … , 𝒚𝑝𝑟𝑒 𝑃′(𝐾)]           (14) 

Consequently, a collection of 𝐾  models form a model 
cluster to characterize prediction uncertainty. Unlike 
traditional predictive models, using such a model cluster for 
prediction can generate multiple predicted values. These values 
can be employed to establish a prediction band, offering a 
representation of prediction uncertainty. To evaluate the 
performance of such a prediction band, two metrics are 
proposed. The first metric, named prediction band accuracy, 
quantifies the proportion of observed values lying within the 
prediction band. Denote by 𝛾 the prediction band, then:  𝛾 = 𝑁𝛾𝑁′                                        (15) 

 

Figure 1. Flowchart of the proposed method 
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where 𝑁′ is the data size and 𝑁𝛾 is the number of true values 
within the prediction band. The second metric, prediction band 
width (denoted as 𝛽), measures the width of the prediction 
band: 𝛽 = 1𝑁′ ∑ |𝑚𝑎𝑥[𝒚𝑝𝑟𝑒(𝑗)]−𝑚𝑖𝑛[𝒚𝑝𝑟𝑒(𝑗)]𝑚𝑎𝑥[𝒚]−𝑚𝑖𝑛 [𝒚] |𝑁′𝑗=1                (16) 

where 𝑚𝑎𝑥[𝑦𝑝𝑟𝑒(𝑗)]  and 𝑚𝑖𝑛[𝑦𝑝𝑟𝑒(𝑗)]  represent maximum 
and minimum values of the generated predicted band for the 𝑗-
th data sample, respectively. These values define the upper 
boundary and lower boundary of the prediction band. The 
component 𝑚𝑎𝑥[𝒚] − 𝑚𝑖𝑛 [𝒚]  is the difference of maximum 
and minimum values of the true observation, which used to 
normalize 𝛽 to [0,1].     
D. Model selection criteria 

The proposed model selection criterion is derived based on 
the prediction band. Typically, high prediction accuracy is 
desirable, which can be achieved by widening the prediction 
band. However, if the prediction band width becomes too large, 
its effectiveness in quantifying model uncertainty may lose. 
Therefore, the model selection criteria aim to find a balance 
between prediction band accuracy and width. Building upon 
these considerations, the proposed criterion, denoted as ∁, is 
formulated as:  ∁= 𝛾𝛽 × (1 − 𝛼×𝑝𝑁′−1)                         (17) 

where 𝛼  represents a turning parameter, 𝑝  stands for the 
number of terms, 𝑁 denotes the data size. Here, the component 𝛾𝛽  assesses the prediction band accuracy while penalizing 

excessively wide prediction bands. The component 1 − 𝛼×𝑝𝑁′−1 

penalizes the addition of model terms. Initially, when a few 

terms are added, the value of 
𝛾𝛽 increases, while the value of 

1 − 𝛼×𝑝𝑁′−1 remains close to 1. However, the penalty becomes 

more significant as more terms are added, leading to a decrease 
in the overall value. Consequently, the maximum value of  ∁ 
indicates the optimal number of terms.  

Lastly, additional approaches can be applied to model the 
uncertainty from the selected models (e.g., the Cloud-NARX 
model [16]). Since the proposed criterion utilizes post-
modeling information, it can be easily integrated into any 
modeling framework like polynomial models as well as neural 
networks. The article employs the NARX model as a case 
study to demonstrate the methodology, as detailed in the 
following section. 

IV. EXPERIMENT 

To validate the effectiveness of the proposed methods, we 
performed a case study on simulation data. We generated a 
dataset from the following designed system: 𝑦(𝑡) = 0.1√|𝑦(𝑡 − 1)|𝑥(𝑡 − 1) + 0.2𝑥(𝑡 − 1)2 +0.7𝑥(𝑡 − 1)𝑥(𝑡 − 2) + 0.4𝑥(𝑡 − 2)𝑦(𝑡 − 2) + 𝜀(𝑡)     (18)              

where the input 𝑥(𝑡) is a randomly generated sequence of 100 
data samples, ranging from -1 to 1. The noise sequence 𝜀(𝑡) 
has zero mean and finite variance. This system has two sources 
of uncertainty. First, the noise sequence is random and cannot 
be accurately represented by the model. Second, in this 
experiment, with a time delay set to 1, maximum time lags of 
2 for input and output variables, and a nonlinearity degree of 2, 

the nonlinear system component √|𝑦(𝑡 − 1)|  cannot be 
precisely described by any of the specified lagged input and 
output variables or their interaction product terms, but term  √|𝑦(𝑡 − 1)|  may be well approximated by some product 
terms. 

 

Figure 2. The results of AIC, BIC and the proposed method (upper: 1st simulation, middle: 2nd simulation, lower: 3rd simulation) 
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TABLE I.  PERFORMANCE COMPARISON OF THE SELECTED MODELS 

Method Measure 
Performances of the model picked 

Simulation 1 Simulation 2 Simulation 3 

AIC 

CC 0.7340 0.78520 0.7296 

PE 0.5370 0.6145 0.5314 

RMSE 0.2305 0.2225 0.227 

BIC 

CC 0.7341 0.7867 0.7364 

PE 0.5380 0.6169 0.5414 

RMSE 0.2303 0.2218 0.2247 

Proposed 
criterion 

CC 0.7363 0.7873 0.7364 

PE 0.5412 0.6179 0.5414 

RMSE 0.2295 0.2216 0.2247 

CC: correlation coefficient, PE: prediction efficiency, RMSE: root mean square error 

 

Following the procedures outlined in Section III, the 
proposed method was assessed follows. First, a bootstrap 
process was conducted to generate 10 sub-datasets, each 
comprising 70% of the original data. For each sub-dataset, 
NARX models were built with a varying number of model 
terms, ranging from 1 to 15. Throughout the process, the three 
criteria including AIC, BIC and the proposed criterion 
formulated in (17) were applied to identify the optimal number 
of terms. Three times of simulated were performed 
independently and the values of AIC, BIC, and the proposed 
criterion were calculated and recorded, as shown in Fig. 2. 
Each of the three criteria suggests their own optimal numbers 
of model terms. Specifically, AIC selected term numbers of 7, 
11, and 6, while BIC chose term numbers of 4, 6, and 4. The 
proposed method picked term numbers of 5, 4, and 4 in the 
three simulations, respectively. the figure, it is evident that the 

three criteria suggest different models in most cases, although 
the proposed criterion suggests the same result as BIC for the 
third simulation. 

The performances of the selected models are detailed in 
Table I. We employed three metrics to assess model 
performance: correlation coefficient, prediction efficiency, and 
root mean square error. It can be noted that the model chosen 
by the proposed criterion outperforms the models selected by 
the other two criteria in most cases. The only exception is 
observed in the 3rd simulation, where BIC selected the same 
model as that suggested by the proposed criterion. The 
performances of all the identified models are presented in Fig. 
3, with the models selected by the proposed criterion 
highlighted with a black dashed line. It can be observed that 
models identified by the proposed criterion show the best 
performance. 

TABLE II.  SELECTED MODEL TERMS OF ONE EXAMPLE 

 Selected Term ERR(100%) Parameters 

1 𝑥(𝑡 − 1) ×  𝑥(𝑡 − 2) 41.6924 0.69573 

2 𝑥(𝑡 − 1)  ×  𝑥(𝑡 − 1) 7.01049 0.20799 

3 𝑥(𝑡 − 2)  ×  𝑦(𝑡 − 2) 5.20104 0.40269 

4 𝑥(𝑡 − 1) 0.59199 0.05250 

5 𝑥(𝑡 − 1)  ×  𝑦(𝑡 − 2) 0.25551 -0.08941 

 

One of the selected models in detailed Table II, which can 
be written down as follows: 𝑦(𝑡) = 0.69573𝑥(𝑡 − 1)𝑥(𝑡 − 2) + 0.20799𝑥(𝑡 − 1)𝑥(𝑡 −1) + 0.40269𝑥(𝑡 − 2) 𝑦(𝑡 − 2) + 0.05250𝑥(𝑡 − 1) −0.08941𝑥(𝑡 − 1) 𝑦(𝑡 − 2)                 (19) 

A visualization of the prediction band associated with the 
selected models is presented in Fig. 4. The prediction band 

 

Figure 3. Model performance vs number of model terms (upper: 1st simulation, middle: 2nd simulation, lower: 3rd simulation) 
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covers most of the observations. However, for some peak 
values, the accuracy of the band decreases. The reason is that 
the models are built on an imbalanced dataset with strong 
noise, where most data samples are significantly lower than the 
peak values. This issue could be partially solved by reducing 
the sample size of the bootstrap process. Nonetheless, the 
primary objective of this experiment is to assess the 
effectiveness of the model selection criteria, and such 
uncertainty analysis can in turn help better evaluating the 
effectiveness of these methods. This condition highlights a 
unique advantage of the proposed method: it can be applied to 
modeling problems with small-sized data, as the strong 
uncertainty introduced by the insufficient data is quantified. 
This offers flexibility in terms of minimal data requirements 
and improves model robustness under strong uncertainty, 
which traditional methods cannot provide. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Prediction interval vs observed values (upper: 1st simulation, 
middle: 2nd simulation, lower: 3rd simulation) 

V. CONCLUSION 

This article introduces a new uncertainty-informed model 
selection method, offering advantages in addressing data 
modeling complexities associated with substantial uncertainty 
and multiple datasets. Through three simulation examples, the 
proposed approach, with the newly introduced model 
selection criterion, has shown superior performance in 
identifying better models compared to conventional model 
selection criteria. Moreover, the method is adaptable to 
various data modeling and machine learning frameworks. 
Future work involves evaluating the proposed method on real-
world datasets and investigating its adaptability to other 
modeling techniques, such as recurrent neural networks. 
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