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 A B S T R A C T

This paper explores the applicability of Convergent Cross Mapping (CCM) and its extension, Time Delay 
Convergent Cross Mapping (TDCCM), to assess the causal relationships between Bitcoin, the S&P 500 index, 
and gold. Unlike conventional causality analysis methods, such as Granger causality or transfer entropy, CCM 
accounts for non-separable, weakly connected dynamic systems, and TDCCM explicitly incorporates time lags 
during cross-mapping, enabling the detection of complex causal relationships in systems with shared nonlinear 
behavior. This makes it particularly suitable for financial time series that often exhibit chaotic and nonlinear 
dynamics, particularly during periods of market instability. We integrate TDCCM with simplex projection and 
sequential locally weighted global linear map (S-map) algorithms, applying a sliding window approach to 
identify short time intervals characterized by high levels of nonlinearity and chaoticity. Using this approach, we 
uncovered a strong causal relationship between Bitcoin and the S&P 500 index during the onset of the COVID-
19 pandemic. Our analysis reveals a bidirectional causal relationship between Bitcoin and the S&P 500 index, 
highlighting their interconnectedness during periods of heightened economic uncertainty. Furthermore, we 
find a unidirectional causal influence of Bitcoin on gold, reflecting Bitcoin’s evolving role as a macroeconomic 
indicator and its growing relevance as an alternative store of value. These findings provide insight into the 
dynamics between cryptocurrencies and traditional financial markets, particularly during periods of global 
economic disruption.
1. Introduction

A time series is a set of observations taken sequentially over time
(Shumway & Stoffer, 2017), for example, daily closing prices of cryp-
tocurrencies or stock markets.  Time series play an important role 
in financial data, for which temporal evolution is paramount to eco-
nomic analysis and investment decisions. Time-series analysis helps 
us understand how the price of an asset evolves over time, providing 
insights into its patterns and trends. Analysts can obtain valuable 
information on how markets behave by analyzing patterns, trends, 
cycles, and potential chaos in these observations (Tsay, 2010). Beyond 
traditional analysis and forecasting methods, the study of relationships 
between univariate time series has attracted growing interest as both 
an explanatory and predictive mechanism (Granger, 1969). Uncovering 
the influence that one temporal variable exerts on another is often 
described as causal analysis.

Causality between time series is an important element, as it can help 
uncover influences that play an explanatory role or can inform various 
financial strategies, including investment or trading strategies. Studies 
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such as Peia and Roszbach (2015) show that time series causal analysis 
is important to explore the bidirectional relationships between financial 
development and economic growth.

A key question in financial analysis is whether stock prices follow 
a random pattern or exhibit chaotic behavior. The Positive Feedback 
Trading Hypothesis (PFTH) suggests that stock price movements are 
chaotic and predictable to some extent (Antoniou, Koutmos, & Pericli, 
2005; Sornette, 2009). Similarly, some studies such as Partida, Gerassis, 
Criado, Romance, Giráldez, and Taboada (2022) have shown that cryp-
tocurrencies such as Bitcoin and Ethereum exhibit chaotic behavior. 
However, in our study, we want to understand the dynamics of Bitcoin 
in relation to other financial assets under conditions of chaos.

Traditional methods such as Granger causality (Granger, 1969) or 
transfer entropy (TE) (Schreiber, 2000) often assume linearity between 
variables, making them less effective when markets are highly volatile 
or show strong nonlinear interactions.

• The Granger causality’s fundamental criterion is separability, 
which implies that causal elements can be distinguished from 
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their effects. Separability reflects the view that systems can be 
understood a piece at a time rather than as a whole. This property 
is satisfied in linear systems and strongly coupled nonlinear 
systems. However, separability fails for general dynamic non-
linear systems. In dynamic systems, if 𝑋 causes 𝑌 , complete 
information about 𝑋 is encoded in 𝑌 , so 𝑋 cannot be removed 
formally. Therefore, Granger is limited to cases where separability 
is met (Sugihara et al., 2012).

• Transfer entropy, on the other hand, is a model-free and an in-
formation theoretic generalization of Granger causality (Lindner, 
Vicente, Priesemann, & Wibral, 2011). TE is able to capture how 
much knowing the past of time series 𝑋 decreases the unpre-
dictability of the future of time series 𝑌 , beyond what is already 
known from the past of 𝑌  itself. The model-free nature of TE 
allows it to operate without being constrained by specific model-
ing assumptions, such as linearity. Although it avoids restrictive 
modeling assumptions, TE can be computationally expensive and 
often requires large datasets to estimate the conditional entropies 
reliably.

To overcome the limitations of these conventional approaches, we 
explore the effectiveness of convergent cross-mapping (CCM), a re-
cent causality analysis method introduced by Sugihara et al. (2012), 
as well as its extension, time delay convergent cross mapping (TD-
CCM) (Ye, Deyle, Gilarranz, & Sugihara, 2015), which explicitly con-
siders different lags in cross mapping to identify causal relationships 
from observational data.

CCM is important in studying financial time series because of its 
ability to detect causality in complex, nonlinear, potentially chaotic 
dynamics, which are conditions often found in modern financial mar-
kets. The CCM systematically reconstructs the underlying state space, 
allowing it to uncover hidden causal patterns even when the time 
series are short, noisy, or subject to rapid fluctuations. The ability to 
capture nonlinear causal effects not only enriches our understanding of 
market dynamics but also has direct applications in risk management, 
portfolio optimization, and strategic decision-making (Ma, Prosperino, 
Haluszczynski, & Räth, 2024; Ong & Herremans, 2023).

This versatility has driven its adoption across diverse fields, in-
cluding ecology (Bonotto, Peterson, Fowler, & Western, 2022; Roy, 
Howes, Müller, Butail, & Abaid, 2019), neuroscience (De Castro Mar-
tins, Chaminade, & Cavazza, 2022), and finance (Azqueta-Gavaldon, 
2020; Javarone, Di Antonio, Vinci, Cristodaro, Tessone, & Pietronero, 
2023; Wu, Gao, An, & Liu, 2021).

Our objective was to utilize a suite of empirical dynamic model-
ing frameworks to evaluate the suitability of the CCM for financial 
time-series data, and assess how effectively the CCM identifies causal 
relationships between financial assets. Specifically, we applied this 
method to the Bitcoin, gold, and S&P 500 index datasets.

The main contributions of this study are as follows:

• We apply time delay convergent cross mapping to Bitcoin, the 
S&P 500 index, and gold.

• We present an approach to study nonlinear and chaotic short-term 
intervals by combining the S-Map and Prediction Decay algorithm 
with a sliding window technique.

• We identify and quantify lagged causal interactions between the 
time series of Bitcoin, gold, and the S&P 500 index.

The remainder of this paper is organized as follows. Section 2 
discusses the related studies. Section 3 provides an overview of the 
general concepts required for the analysis in this study. Section 4 details 
the methodology used to infer causality and describes the experimental 
setup. The empirical findings are presented in Section 5. Finally, the 6 
section summarizes the main findings and suggests directions for future 
research.
2 
2. Related works

2.1. Causal analysis with transfer entropy and Granger causality

Dimpfl et al. used transfer entropy (Schreiber, 2000) to better 
understand financial markets. Initially, he applied it to study Bitcoin’s 
nonlinear relationships (Dimpfl & Peter, 2013) and later expanded it in 
2019 (Dimpfl & Peter, 2019) to explore causality between Bitcoin and 
other cryptocurrencies. However, transfer entropy is most effective for 
large datasets and excels in detecting long-term causality. This makes 
it unsuitable for short- or medium-term analyses.

Granger causality has also been widely applied in financial markets 
and cryptocurrency research to uncover directional relationships. Aus-
loos, Zhang, and Dhesi (2020) detected bidirectional Granger causality 
between the CSI-300 index futures and spot markets.

de Oliveira Carosia, Coelho, and da Silva (2021) applied senti-
ment analysis and the Granger causality test to analyze the impact of 
financial news sentiment on the Brazilian stock market.

However, because of the separability criterion, which is satisfied in 
linear systems and strongly coupled nonlinear systems, their applica-
tion to dynamic nonlinear systems may result in spurious correlations.

For such purposes, the CCM is often preferred because it is not 
limited to large data volumes or linear constraints.

2.2. Causal analysis with CCM

Clark, Ye, Isbell, Isbell, Deyle, Cowles, Tilman, Tilman, and Sugihara 
(2015), Sugihara et al. (2012) applied the CCM to ecology and envi-
ronmental science. This seminal paper introduces the CCM and demon-
strates its application in identifying causal relationships in ecological 
data, such as interactions between sardine and anchovy populations. 
Building on this foundational work, Hao Ye et al. in collaboration 
with Sugihara, later introduced the TDCCM applied to environmental 
science (Tsonis, Deyle, Ye, & Sugihara, 2018; Ye et al., 2015), which 
extends the CCM framework by explicitly incorporating different time 
lags in cross-mapping. TDCCM enhances the ability to detect and 
characterize causal relationships by accounting for potential temporal 
delays between interacting variables, making it particularly useful for 
systems in which interactions occur with inherent time lags. This 
advancement provides a more nuanced tool for understanding complex 
systems and broadens the applicability of causality analysis in various 
fields.

Lin, Guo, and Luo (2024) applied time-lagged CCM in the field of 
renewable energy to identify the causal relationships between meteo-
rological factors and offshore wind power generation.

The CCM, combined with chaoticity estimation using the S-map 
technique and a sliding window approach, has also been applied in 
various other fields. In animal behavior science, the CCM has been 
employed to identify directional coupling between flying bat pairs (Roy 
et al., 2019).

CCM has been widely applied across diverse fields. In neuroscience, 
CCM is used to analyze brain activity interactions and their underlying 
dynamics (Avvaru & Parhi, 2023; De Castro Martins et al., 2022; Wis-
müller, Wang, DSouza, & Nagarajan, 2014). In social media analytics, 
CCM has been employed to study user behavior and influence pat-
terns (Luo, Zheng, & Zeng, 2014; Manchanayake, Zaidi, Karunasekera, 
& Leckie, 2024).

CCM has found applications in energy systems (Li, Li, Juguang, 
Yang, Qiao, & Xiaobing, 2023; Liu, Lei, Zhang, & Du, 2019); in climate 
science, (Bonotto et al., 2022; Huang, Franzke, Yuan, & Fu, 2020; Wang 
et al., 2018); in physics, it has been applied to analyze resistor-inductor 
circuit systems (McCracken & Weigel, 2014) as well as in medicine 
and healthcare (Cobey & Baskerville, 2016; Gu, Lin, & Lin, 2023; Li 
& Convertino, 2021).
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2.3. CCM analysis of financial time series

Ma et al. (2024) demonstrate that financial markets exhibit signifi-
cant nonlinear causality, and that traditional correlation measures may 
underestimate these effects. Focusing on the German DAX and U.S. 
Dow–Jones stock indices, they find that nonlinear causality plays a 
critical role in understanding market dynamics, especially during major 
events such as Black Monday and the global financial crisis.

Javarone et al. (2023) employed CCM to identify the causality 
between human behavior, blockchain dynamics, and market trends in 
Bitcoin. Their findings suggest a significant causal link between transac-
tion anomalies within blockchain and subsequent market behavior. Wu 
et al. (2021) applied the CCM theory combined with a sliding window 
approach to investigate the time-varying causal relationships in global 
stock markets.

Ge and Lin (2021) demonstrated that sliding windows can clarify 
the understanding of causal effects, which is valuable for producing a 
detailed description of causal dynamics in real systems. They used a 
cross-mapping coefficient to quantify the causal relationship between 
Chinese and American stock market time series. Additionally, they 
propose kernel change point detection based on CCM, applied to the 
financial system during the 2008 financial crisis to assess the linkage 
of Chinese and American stock markets (Ge & Lin, 2022). Du and Zhang 
(2023) used CCM combined with the S-Map algorithm to explore non-
linear bidirectional causality between U.S. stocks and bonds, showing 
that causal strength significantly impacts stock-bond correlations and 
increases prediction accuracy. Sun, Fang, Gao, An, Liu, and Wu (2021) 
explored the time-varying causal relationships among nickel prices in 
spot, futures, and stock markets using CCM. Their findings provide 
insights into nonlinear interactions and causal strengths in commodity 
markets through a novel combination of CCM and complex network 
theory.

Azqueta-Gavaldon (2020) applied the CCM to explore the causal 
relationship between narratives circulated by the media and crypto 
prices. He found strong bidirectional causal relationships between nar-
ratives and cryptocurrency prices. Using CCM, Tu, Fan, and Fan (2019) 
found that Bitcoin plays a leading role in cryptocurrencies.

Mønster, Fusaroli, Tylén, Roepstorff, and Sherson (2017) evaluated 
the performance of CCM for causal inference in noisy time-series data. 
They found that while the CCM can infer causal relationships, its 
accuracy diminishes with increasing noise levels and in systems with 
intermediate coupling.

3. Empirical dynamical modelling

In this section, we introduce Empirical Dynamical Modelling (EDM) 
and its key methods, including simplex projection, S-map, and con-
vergent cross-mapping. These techniques are used to determine the 
embedding dimensions, analyze nonlinear dynamic systems, and infer 
causality.

The EDM is a non-parametric framework for modeling nonlinear 
dynamic systems and is based on the mathematical theory of recon-
structing attractor manifolds from time-series data (Takens, 1981). 
EDMs are an alternative and highly flexible approach for using explicit 
equations because these equations can be impractical when the exact 
mechanisms are unknown or too complex to be characterized with 
existing datasets. This framework is applicable to any stationary or 
quasi-ergodic dynamic process, including chaotic systems.

Attractor reconstruction forms the foundation of the EDM, which 
aims to recreate the dynamics of a system from time-series data. 
In dynamical systems theory, time series are viewed as ‘‘observation 
functions’’ of a dynamical system, representing the projections of the 
system’s behavior over time. The state of the system is depicted as a 
point in high-dimensional space with the axes corresponding to the 
fundamental state variables. The key assumption is that the system state 
3 
Fig. 1. In Panel A the states of the Lorenz Attractor are shown projected onto the 
𝑥-axis, resulting in a time series for variable 𝑥. Panel B demonstrates the embedding 
process, where the original time series (𝑋𝑡) is plotted alongside its time-delayed versions 
(𝑋𝑡−𝜏 ) and (𝑋𝑡−2𝜏 ), with (𝜏) being the time delay. These time-delayed components are 
then used to reconstruct the attractor in a new phase space (the rightmost plot in Panel 
B).
Source: Figure taken from Commons (2022).

evolves over time according to deterministic rules, meaning that the 
behavior is not entirely stochastic.1

Because time series are sequential observations of a system’s behav-
ior, information on the underlying dynamics is inherently encoded in 
their temporal ordering. Consequently, it is possible to reconstruct a 
‘‘shadow’’ version of the original manifold using lagged versions of a 
single time series; if sufficient lags are used, the reconstructed states 
will map one-to-one to the actual system states.

As shown in Fig.  1, the system state of the Lorenz Attractor can be 
represented using an embedding made up of 𝐸 lags of 𝑋. While the 
behavior of a system is governed by a high-dimensional state space, 
unobserved variables can be replaced by the lags of a single time 
series. With sufficient lags, the reconstructed manifold retained the 
key mathematical properties of the original system. This ensures that 
the reconstructed states correspond one-to-one with the actual system 
states, and nearby points in the reconstruction reflect similar system 
behavior.

For a time series of length 𝐿, 𝑋𝑡 = {𝑋𝑡; 𝑡 = 1,… , 𝐿}, the recon-
structed manifold is defined as a set of vectors.
𝑋 = ⟨𝑋𝑡, 𝑋𝑡−𝜏 , 𝑋𝑡−2𝜏 ,… , 𝑋𝑡−(𝐸−1)𝜏⟩

where 𝑡 = 1 + (𝐸 − 1)𝜏 to 𝑡 = 𝐿, 𝐸 is the embedding dimension 
(number of lags), and 𝜏 is the time lag between successive dimensions.

3.1. Embedding dimension using simplex projection

Simplex projection is a powerful method for identifying the optimal 
embedding dimension (𝐸) and time delay (𝜏), both of which are 
essential for reconstructing the attractor manifold (𝑀) and analyzing a 
system’s deterministic behavior (Sugihara & May, 1990). Additionally, 
simplex projection can be used to distinguish between chaos and mea-
surement errors by evaluating the forecasting skill, which is measured 
as the correlation coefficient between the predicted and observed tra-
jectories. Embedding that yields the highest forecasting skill provides 
the best dynamic description of the data. If this model outperforms 
a comparable linear model, then the time series can be classified as 
nonlinear.

1 The dissociation of determinism and predictability is characteristic of 
so-called ‘‘chaotic’’ nonlinear systems.
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Earlier methods for delay coordinate embedding (Chan & Tong, 
2001; Sauer, Yorke, & Casdagli, 1991) proposed selecting 𝜏 by min-
imizing the time-series autocorrelation or mutual information, fol-
lowed by determining 𝐸 through nearest-neighbor forecasting (Sugi-
hara & May, 1990) or a similar false nearest-neighbor algorithm (Abar-
banel & Kennel, 1993). Another method involves evaluating the pre-
diction accuracy over a grid of 𝐸 and 𝜏 values, and selecting the 
pair that produces the most accurate forecasts 𝜏 time steps ahead, 
with a preference for smaller values when the results are statistically 
indistinguishable (Sugihara, 1994).

To conclude, in simplex projection, the original data are embedded 
using the embedding dimension 𝐸 and the time delay 𝜏. The opti-
mal embedding dimension corresponds to the highest forecast skill, 
as indicated by the correlation coefficient 𝜌 between predictions and 
observations. For details on the implementation of simplex projection, 
refer to Sugihara and May (1990).

3.2. Prediction decay

In many natural systems, the key property is that nearby trajectories 
diverge over time. This phenomenon, known as deterministic chaos or 
the ‘‘butterfly effect’’ (Lorenz, 1963), implies that although short-term 
predictions may be feasible, their accuracy diminishes as the prediction 
horizon increases, making long-term forecasting progressively more 
challenging.

After identifying the best dynamic description of the data, we can 
use simplex projection to examine how prediction accuracy changes 
with time to prediction (𝑇𝑝)—the number of future time steps for which 
forecasts are made (Sugihara & May, 1990). A decay in accuracy as 𝑇𝑝
increases indicates that the system exhibits chaotic behavior, in which 
case the time series can be further classified as chaotic.

3.3. Sequential locally weighted global linear map

The simplex projection is limited to cases in which the observa-
tional noise is uncorrelated. Significant short-term autocorrelations in 
colored noise can cause the correlation (𝜌) between the predicted and 
observed values to decay with an increasing prediction-time interval 
(𝑇𝑝), potentially leading to a false classification of the time series as 
chaotic (Sugihara, 1994).

To distinguish between linear and nonlinear deterministic behav-
iors, Sugihara and May (1990) proposed that a time series may be 
regarded as nonlinear if the correlation obtained via a simplex pro-
jection is significantly better than that obtained using the best-fitting 
autoregressive linear model. However, this approach requires addi-
tional steps to identify the best-fitting autoregressive model and to 
perform a significance test (e.g., Fisher’s 𝑧) to compare the correlations. 
As an alternative, the S-map method (Sugihara, 1994) offers a more 
efficient way to differentiate between linear and nonlinear dynamics, 
as well as between autocorrelated noise and deterministic chaotic 
behavior.

Unlike simplex projection, S-map constructs local linear maps to 
forecast from the reconstructed state space. By adjusting the parameter 
𝜃, the S-map can transition from a global linear model to a locally 
nonlinear model, making it a simple and effective test for nonlinearity 
in time-series data. For each prediction, the S-map constructs a unique 
exponentially weighted linear map with 𝜃 controlling the degree of 
local weighting. When 𝜃 = 0, all the points are equally weighted, 
yielding a global linear solution equivalent to an autoregressive model. 
As 𝜃 > 0, nearby points are weighted more heavily, allowing the map 
to vary locally and capture the nonlinear behavior.

The difference in the forecasting skill between the linear (𝜃 = 0) 
and nonlinear (𝜃 > 0) models can be used to assess the degree of 
nonlinearity in a stationary time series. If the time series is sampled 
from the autoregressive colored noise, the linear model (𝜃 = 0) is 
likely to yield the best forecasting skill. Conversely, an improvement 
4 
in forecasting skill when 𝜃 > 0 indicates nonlinear dynamics because 
the local adaptability of the model provides a better description of the 
system’s behavior. For details on the implementation of S-map, please 
refer to Sugihara (1994).

3.4. Convergent cross mapping

CCM is a method designed to infer causality in dynamic systems. 
Unlike traditional causality methods, such as Granger causality, which 
rely on the predictive relationship between variables, CCM establishes 
causation based on the shared dynamics of interacting variables within 
the same underlying system (Sugihara et al., 2012). The fundamental 
principle of CCM is that if two variables 𝑋 and 𝑌  are causally linked 
(i.e., they share a common attractor manifold 𝑀), then the states of one 
variable can be reconstructed using the historical record of the other.

CCM leverages the concept of manifold reconstruction, where the 
lags of a single time series are used to form a shadow manifold (𝑀𝑥 or 
𝑀𝑦) that uniquely represents the system dynamics. By testing the extent 
to which one reconstructed manifold can map the other, CCM evaluates 
whether the two variables interact within the same dynamic system and 
are thus causally related. If 𝑌  influences 𝑋, then causality is established 
if the historical record of the affected variable (𝑋) reliably estimates 
the state of the causal variable (𝑌 ). This is because 𝑀𝑥, reconstructed 
from 𝑋, must contain complete information about 𝑋 which includes 
information about all the causes, including 𝑌 . The strength of this 
causal relationship is quantified using the correlation coefficient (𝜌) 
between the predicted (𝑌 |𝑀𝑥) and observed (𝑌 ) values (Sugihara et al., 
2012).

Convergence is a critical property for inferring causality with CCM, 
as it reflects improved predictive skills with increasing time-series 
length or library size. This occurs because the attractor manifold be-
comes denser, and the nearest neighbors become closer, more accu-
rately representing the system’s dynamics (Tsonis et al., 2018). How-
ever, convergence is limited by factors such as observational errors, 
process noise, and time-series length. Failure to account for conver-
gence can lead to spurious results because cross-mapping based solely 
on statistical associations between variables does not improve with the 
addition of data.

The significance of CCM is typically assessed using predictive skills 
with the largest possible library size. A more robust method involves a 
surrogate time series that preserves the linear characteristics of the data 
while removing any putative nonlinear structure. Null distributions can 
be generated by cross-mapping from surrogates, and a 95% quantile can 
be used to evaluate the significance of the observed cross-mapping skill 
(𝛼 = 0.05) (Tsonis et al., 2018).

One of CCM’s key advantages is its ability to detect causation 
in nonlinear and chaotic systems, for which traditional parametric 
approaches often fall short. Moreover, CCM does not assume linearity 
or require explicit models of the system, making it robust for analyzing 
complex real-world data. For a comprehensive introduction to CCM, its 
theory, and implementation, please refer to Tsonis et al. (2018).

3.5. Time delay convergent cross mapping

Time-delay convergent cross-mapping builds upon the traditional 
CCM to address its limitations in identifying delayed causal interac-
tions and distinguishing between bidirectional causality and strong 
unidirectional causality that leads to synchrony (Ye et al., 2015). By 
introducing an additional lag parameter (𝑙), TDCCM evaluates how 
the cross-mapping skill varies across different time lags, facilitating 
the identification of causal delays and clarifying ambiguities related to 
synchrony.

When using TDCCM, the causal interactions between two variables, 
𝑋 and 𝑌 , can be analyzed by varying 𝑙. When cross-mapping from 𝑋 to 
𝑌 , a negative lag (𝑙 < 0) indicates that the causal signal appears first in 
𝑌  and later in 𝑋, which is consistent with 𝑌  causing 𝑋 because causes 
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must precede effects. Conversely, positive lags (𝑙 > 0) suggest that 𝑋
may influence the future value of 𝑌 . By exploring this ‘‘asynchrony’’, 
TDCCM helps distinguish bidirectional causality from synchrony. In 
addition, TDCCM can be used to identify time delays in causation, 
understand the effects of stochastic drivers, and determine the sequence 
of variables in causal chains.

The implementation involves running CCM over a range of lags and 
constructing a 𝜌–𝑙 plot to identify the optimal lag (where the cross-
mapping skill is maximized). The analysis proceeds by performing CCM 
with the identified lag and evaluating convergence to confirm causality 
under these optimized settings. For further discussions on the topic and 
details of the implementation, please refer to Ye et al. (2015).

4. Causal analysis methodology

The rapid evolution of global financial markets has introduced 
unconventional assets, such as Bitcoin, into mainstream investments. 
As Bitcoin’s prominence grows, there is an increasing need to explore 
novel methodologies suitable for analyzing its complex dynamics, es-
pecially in relation to traditional assets such as gold and stock indices. 
This study employs time-delay convergent cross mapping to analyze the 
causal interactions between Bitcoin and gold and between Bitcoin and 
the S&P 500 index.

4.1. Data

Bitcoin is a decentralized digital currency introduced in 2009 by 
the pseudonymous entity Satoshi Nakamoto (Nakamoto, 2008). Oper-
ating on blockchain technology, Bitcoin enables peer-to-peer transac-
tions without intermediaries. It has gathered attention as a specula-
tive asset due to its significant price volatility and potential for high 
returns (Cheah & Fry, 2015).

The Bitcoin market is characterized by high volatility. Price swings 
are common and driven by market speculation, regulatory news, and 
technological developments (Corbet, Lucey, Urquhart, & Yarovaya, 
2019). For example, Bitcoin’s price can experience double-digit per-
centage changes within short periods, reflecting its speculative na-
ture (Cheah & Fry, 2015; Corbet et al., 2019). This high volatility poses 
challenges for traditional linear causality methods, such as Granger 
causality, as it is often attributed to nonlinear chaotic dynamics and 
may not adequately capture the nonlinear dynamics present in Bitcoin’s 
price movements (Diks & Wolski, 2016).

Recent research by Tong, Chen, and Zhu (2022) revealed that 
Bitcoin’s price fluctuations exhibit nonlinear and chaotic behavior. 
Their analysis demonstrates that Bitcoin’s volatility is time-varying 
and displays clustering effects, indicating that price movements are 
not random but follow a complex, nonlinear system. This chaotic 
nature signifies inherent long-term unpredictability, challenging the 
applicability of traditional linear causality methods such as Granger 
causality.

The S&P 500 index is a market capitalization-weighted index com-
prising the 500 largest publicly traded companies in the United States. 
It serves as a market proxy, representing approximately 80% of U.S. 
equity market capitalization, and is a benchmark for the overall per-
formance of the U.S. stock market (S&P Dow Jones Indices LLC, 2024). 
Movements in the S&P 500 reflect investor sentiment regarding eco-
nomic growth, corporate earnings, and market risk2 (Fama & French, 
2004).

2 In their paper, Fama and French provide a comprehensive review of the 
capital asset pricing model (CAPM), which posits that the expected return 
of a security or a portfolio equals the rate on a risk-free security plus a 
risk premium. The risk premium is proportional to the systematic risk of the 
security or portfolio, which is measured by its beta relative to the market 
portfolio. The market portfolio, often proxied by a broad market index like 
the S&P 500, embodies the aggregate expectations and sentiments of investors 
regarding economic prospects.
5 
The S&P 500 exhibited nonlinear dynamics in response to complex 
economic events. Studies find evidence of nonlinear behavior and 
chaotic dynamics in stock market indices (Hsieh, 1991; Scheinkman & 
LeBaron, 1989). These dynamics suggest that traditional linear mod-
els may not fully capture the complexities of market movements, 
particularly during periods of economic stress.

Gold has played a fundamental role in the global financial system 
for centuries owing to its scarcity and enduring value. It is widely 
recognized as a safe haven asset; investors prefer to invest in gold 
during periods of economic uncertainty or market volatility because 
it tends to retain or increase value when other assets decline (Baur 
& Lucey, 2010). Gold often preserves its purchasing power over time, 
making it a preferred asset during inflationary periods (Capie, Mills, & 
Wood, 2005). Its inverse correlation with the U.S. dollar allows gold to 
act as a hedge against currency fluctuations (Capie et al., 2005; Joy, 
2011).

Although gold is less volatile than Bitcoin, it still experiences price 
fluctuations influenced by factors such as changes in real interest 
rates, which can affect gold’s attractiveness (Tully & Lucey, 2007), and 
geopolitical events, as political instability often leads to an increased 
demand for gold. These dynamics may involve nonlinear relationships, 
which traditional causality methods may overlook (Bekiros, Boubaker, 
Nguyen, & Uddin, 2017).

The high volatility and complex dynamics of Bitcoin, along with 
the complex behaviors of the S&P 500 index and gold, necessitate ad-
vanced analytical tools. Traditional causality methods, such as Granger 
causality, assume linear relationships and may fail to detect causality 
in nonlinear systems. By employing CCM to analyze the causal relation-
ships between Bitcoin and the S&P 500 and between Bitcoin and gold, 
this study aims to demonstrate the applicability and advantages of CCM 
in financial time series analysis—specifically for highly volatile assets 
such as Bitcoin.

Our dataset comprises daily closing prices ranging from 17/08/2017 
to 19/04/2024. We utilize two data sources.

• For Bitcoin prices, we gather daily data from CoinMarketCap 
website.3

• We access historical financial market data for S&P 500 (SPX) and 
gold (GL) from NASDAQ.4

Bitcoin prices are available every day of the week, whereas gold and 
S&P 500 index prices are available only on US trading days. To ensure 
consistency, we removed weekend data from Bitcoin prices, resulting 
in a total of 1680 daily price points.

To apply CCM, which requires only one pair of time series, we 
focus on the closing prices of the assets under study. However, because 
closing prices are non-stationary, we analyze log returns instead of raw 
prices, following the approach of Ge and Lin (2021). Additionally, all 
data values were converted into integers to meet the requirements of 
the CCM analysis.

4.2. Library and window size

A common challenge in statistical analyses, particularly in state-
space reconstruction methods such as the CCM, is the requirement 
of a sufficient sample size, which is closely tied to the attractor’s 
dimensionality; the higher the dimension, the more data are needed 
for accurate reconstruction. In our analysis, this issue was compounded 
by using a windowing method to examine how the coupling between 
variables changed over time, effectively reducing the amount of data 
available in each window.

Thus, the concept of stationarity is crucial. Stationarity implies 
that the statistical properties of a system do not change over time, 

3 https://coinmarketcap.com/coins/
4 https://www.nasdaq.com/market-activity/

https://coinmarketcap.com/coins/
https://www.nasdaq.com/market-activity/
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thereby ensuring that the reconstructed attractor within each window 
accurately represents the system dynamics during that period. While 
ergodicity is a stronger condition that equates time averages with 
ensemble averages, state-space reconstruction methods such as CCM 
primarily require the system to be stationary or quasi-ergodic within 
the analysis window.

Sugihara (Sugihara et al., 2012) noted that Empirical Dynamic 
Modeling methods, including CCM, remain effective even with noisy 
and short time series of 35–40 points. Similarly, De Castro Martins (De 
Castro Martins et al., 2022) applied EDM to sample sizes of 200, resam-
pled from the original time-series length of 50. Although increasing the 
sample size generally improves the analysis, our objective is to find a 
window length that is short enough to capture the evolving dynamics 
but long enough to ensure reliable attractor reconstruction within each 
window. By considering stationarity, we emphasize the importance of 
selecting window lengths that maintain consistent statistical properties 
of the system, balancing the need for temporal resolution with sufficient 
data for robust analysis.

4.3. Optimal embedding dimension

The optimal embedding dimension 𝐸 determined during the analy-
sis, is a good indicator of the use of sufficient data. High embedding 
dimensions suggest that system dynamics are complex and require 
more data for accurate reconstruction. By selecting window lengths that 
resulted in smaller optimal 𝐸 values (less than the maximum tested 
value of 10), we ensured that each window contained sufficient data 
points to reliably reconstruct the system’s attractor while maintaining 
stationarity within the window.

To determine the optimal embedding dimension 𝐸 and the time to 
delay 𝜏, and to select the embedding parameters, we performed a grid 
search by evaluating the prediction accuracy across a range of 𝐸 from 
1 to 10 and 𝜏 values from 1 to 3. We select the pair that produces the 
most accurate forecasts (that best unfolds the attractor) 𝑇𝑝 = one time 
step ahead across the entire dataset through sliding windows (Sugihara, 
1994; Sugihara & May, 1990).

This approach balances the need to capture temporal changes in 
coupling with the need for sufficient data for robust state–space recon-
struction. Empirically, we found that a sample size of 100 per window 
with a 20-point step satisfied these conditions, capturing short-term 
dynamics while minimizing the influence of long-term trends.

The optimal embedding dimension 𝐸 and the corresponding 𝜏 are 
then applied to the Prediction Decay, S-map algorithm, and time-delay 
CCM analysis across all sliding windows to ensure consistency in our 
analyses.

4.4. Nonlinearity and chaos

After selecting the optimal embedding dimension and the corre-
sponding lag of the time delay 𝜏 in each window, we used both 
the S-Map and Prediction Decay algorithms for the points in each 
window to measure the nonlinearity and chaoticity of the time series. 
Following Sugihara’s work (Clark et al., 2015; Sugihara et al., 2012) it 
is important to understand that CCM is most effective in coupled non-
linear systems, meaning that both time series should exhibit nonlinear 
behavior.

Fig.  2 displays the mean and standard error of the prediction skill 
(𝜌) of the S-Map algorithm, across all 53 sliding windows for the three 
assets: Bitcoin (Fig.  2(a)), the S&P 500 index (Fig.  2(b)), and gold (Fig. 
2(c)). We see that as the weights (𝜃) increase, the prediction skill also 
increases, indicating nonlinear behavior for all variables.

Additionally, Fig.  3 shows the mean and the standard error of 
the prediction skill (𝜌) of the Prediction Decay algorithm throughout 
all 53 windows. As prediction horizon (𝑇 𝑝) increases, we observe 
a sharp decrease in 𝜌, suggesting chaotic dynamics across all three 
assets (Sugihara & May, 1990).
6 
Fig. 2. The S-Map algorithm is combined with a sliding window approach to measure 
nonlinearity. For each value of 𝜃, we calculated the mean and standard error of the 
predictive skill (𝜌) across 53 windows. In all three assets – (a) BTC, (b) SPX, and (c) 
GOLD – the predictive skill increases as 𝜃 grows. This upward trend in 𝜌 indicates 
nonlinear behavior in each of these markets.

4.5. CCM analysis

Having confirmed that the variables exhibited nonlinear and chaotic 
behaviors across the sliding windows, our next objective was to deter-
mine the optimal lag between pairs of variables.

To do this, we ran TDCCM over a 10-day delay between variables 
to determine the duration of their effects on each other. By doing so, 
we identify the optimal lag at which a causal relationship appears, 
because true causation may be evident after several time steps and not 
immediately.
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Fig. 3. The prediction decay algorithm is combined with the sliding window approach 
to measure chaoticity. For each value of the prediction horizon 𝑇𝑝, we calculated the 
mean and standard error of prediction skill (𝜌) across 53 windows. In all three assets – 
(a) BTC, (b) SPX, and (c) GOLD – prediction skill has a sharp decrease with increasing 
prediction horizon (𝑇𝑝), demonstrating chaotic behavior across all three assets.

We then used CCM to ensure convergence in certain windows 
because failing to account for convergence can produce misleading or 
spurious results.

To further validate our findings, we conducted a surrogate analysis. 
Surrogate testing (Theiler, Eubank, Longtin, Galdrikian, & Farmer, 
1992) helps distinguish genuine interactions from random patterns. 
Specifically, we generated 100 surrogate time series from the original 
data and calculated the 95% quantiles of the resulting distribution of 
cross-mapping (𝜌) values.
7 
We then checked the convergence of each cross-mapping and com-
pared the 𝜌 values from these surrogate mappings to the actual cross-
map 𝜌 value obtained from the original data.

5. Experimental results

Our focus lies in exploring the relationships of Bitcoin paired with 
variables such as gold and the S&P 500 index. Here, we present 
and discuss the empirical results obtained from our analysis of CCM 
nonlinear and linear patterns of behavior. For simplicity, we present a 
few examples of the results.

5.1. Time delay CCM results

After identifying the time intervals at which both variables exhibit 
nonlinear or chaotic behavior, we determine the optimal delay (𝑇𝑝) 
between the time series. Fig.  4(a), for instance, illustrates the effect du-
ration between Bitcoin and the S&P 500 index. In this case, the optimal 
embedding dimension for Bitcoin is 𝐸 = 4 with a corresponding 𝜏 = 3.5 
In contrast, for SPX, 𝐸 = 3 with 𝜏 = 1. Time Delay CCM (TDCCM) shows 
that both variables share the same delay (𝑇𝑝 = −3) with a prediction 
skill of approximately 0.45 from SPX to Bitcoin—significantly higher 
than in the opposite direction. This suggests bidirectional coupling, 
although SPX appears to have a stronger influence on Bitcoin.

A similar analysis for Bitcoin and Gold is shown in Fig.  4(b), which 
shows the optimal embedding dimension of 𝐸 = 4 for Bitcoin and 𝐸 = 1
for gold, with 𝜏 = 2 and 𝜏 = 3 respectively. The highest CCM prediction 
skill was observed at 𝑇𝑝 = 9 from Bitcoin to gold, and 𝑇𝑝 = −2 from 
gold to Bitcoin. These results suggest that Bitcoin influences gold, as 
the dynamics of the Bitcoin time series best predict the future values 
of the gold time series.

5.1.1. Bitcoin & SPX result
Fig.  5 illustrates the results of a CCM analysis between the S&P 500 

index (SPX) and Bitcoin (BTC) over time. The presence of a solid marker 
indicates a statistically significant causation in a given time window. 
The blue line (BTC to SPX) indicates that the S&P 500 index influences 
Bitcoin, whereas the orange line (SPX to BTC) indicates that Bitcoin 
influences the S&P 500 index. The dashed lines mark the start (blue) 
and end (orange) of the COVID-19 pandemic period to contextualize 
the analysis.

The periods with a solid blue marker (BTC to SPX) demonstrate that 
the S&P 500 index significantly influences Bitcoin during these time 
windows. This implies that traditional financial market movements, 
represented by the S&P 500, have a predictive effect on Bitcoin’s 
behavior during these specific periods. By contrast, periods with a solid 
orange marker (SPX to BTC) indicate a reverse relationship in which 
Bitcoin significantly influences the S&P 500. These findings suggest 
that, during certain times, Bitcoin serves as a leading indicator of 
market sentiment, possibly because of its growing role as an asset class 
with macroeconomic implications.

Time windows with blue and orange markers signify bidirectional 
causality, where the S&P 500 index and Bitcoin influence each other. 
These periods reflect stronger interdependence between the cryptocur-
rency and traditional financial markets. Bidirectional causality often 
occurs during periods of heightened financial stress or uncertainty 
when both markets react to shared global economic conditions or 
investor sentiment.

The absence of markers indicates a lack of significant causation in 
either direction, suggesting that neither the S&P 500 index nor Bitcoin 
has a measurable predictive influence on the other. This could reflect 

5 In the plots, correspondent negative 𝜏 values appear as a consequence of 
the Python implementation used in this analysis.



A. Isufaj et al. Expert Systems With Applications 277 (2025) 127125 
Fig. 4. In TDCCM, for 𝑇𝑝 ≤ 0, 𝑋 → 𝑌  means Y is causing X; for 𝑇𝑝 > 0, 𝑋 → 𝑌  means 
X is causing Y because the dynamics of X best predicts future values of Y. If this is 
the case, then to confirm this, we use 𝑌 → 𝑋, and for this, we should get values of 
𝑇𝑝 < 0. For cases where both 𝑋 → 𝑌  and 𝑌 → 𝑋 yields 𝑇𝑝 > 0, then that is a sign that 
their interaction is being influenced by a third variable.

Fig. 5. CCM between Bitcoin and S&P 500 over time: Solid markers indicate significant 
causation in one or both directions, with dashed lines marking the start (blue) and end 
(orange) of the COVID-19 pandemic period.

periods of relative market independence or low volatility, in which each 
market follows its internal dynamics.

The dashed blue line represents the start of the COVID-19 pandemic, 
and the orange dashed line marks the end. At the onset of the pandemic, 
there was a clear spike in causation, with both unidirectional and 
bidirectional relationships emerging around that period. This finding 
indicates increased interdependence during this period, possibly driven 
by global uncertainty, synchronized market reactions, and heightened 
risk sentiment. Notably, SPX’s influence on Bitcoin (blue markers) was 
8 
Fig. 6. CCM between Bitcoin and gold over time: Solid markers indicate significant 
causation in one or both directions, with dashed lines marking the start (blue) and end 
(orange) of the COVID-19 pandemic period.

more prominent during the initial stages of the pandemic, reflecting 
Bitcoin’s sensitivity to movements in traditional markets.

Similarly, toward the end of the pandemic period, there was an-
other peak in causation, with a notable bidirectional relationship. This 
likely corresponds to global economic recovery and shifting investor 
sentiment as markets adjust to post-pandemic conditions. The interde-
pendence between SPX and Bitcoin during these periods underscores 
the influence of macroeconomic factors on both markets.

These findings suggest that the S&P 500 index, as a representa-
tion of traditional financial markets, often influences Bitcoin during 
times of economic stress or recovery. This highlights Bitcoin’s inte-
gration into the broader financial ecosystem and its susceptibility to 
global market trends. Conversely, Bitcoin’s influence on the S&P 500 
index during certain periods could indicate its emerging role as an 
alternative asset class and an investor risk appetite indicator. The 
bidirectional causality observed during significant events, such as the 
COVID-19 pandemic, highlights the complex and evolving interplay 
between cryptocurrencies and traditional markets.

5.1.2. Bitcoin & gold result
Fig.  6 illustrates the results of a CCM analysis between Bitcoin and 

gold over time. Solid markers indicate statistically significant causation 
within a given time window. The blue line (BTC to gold) indicates that 
gold influences Bitcoin, whereas the orange line (gold to BTC) indicates 
that Bitcoin influences gold. The dashed blue and orange lines represent 
the start and end of the COVID-19 pandemic, respectively, providing 
context for the observed dynamics.

Periods with a solid blue marker (BTC to gold) demonstrate that 
gold significantly influences Bitcoin during these time windows. This 
suggests that movements in gold, as a traditional safe haven asset, have 
a predictive effect on Bitcoin’s price dynamics. By contrast, periods with 
a solid orange marker (gold to BTC) indicate that Bitcoin significantly 
influences gold, which could reflect Bitcoin’s growing relevance as a 
macroeconomic indicator or its competition with gold as an alternative 
store of value.

Time windows with both blue and orange markers signify bidirec-
tional causality, where gold and Bitcoin influence each other. These 
periods reflect a strong interplay between the two assets, possibly 
driven by shared reactions to global economic conditions, shifts in risk 
sentiment, or changes in the perception of safe-haven assets.

The absence of markers in certain time windows indicates no sig-
nificant causation in either direction. During these periods, Bitcoin and 
gold appeared to behave independently, likely reflecting times of low 
volatility or differing market drivers for these two assets.

The start of the COVID-19 pandemic (dashed blue line) corre-
sponded to a significant increase in causation with notable bidirectional 
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dynamics during this period. Gold’s influence on Bitcoin (blue markers) 
is particularly prominent, highlighting Bitcoin’s sensitivity to tradi-
tional safe-haven assets during times of heightened uncertainty. This 
suggests that Bitcoin reacted to movements in gold as investors sought 
to reposition their portfolios in response to economic shocks.

However, as the pandemic progressed, these dynamics shifted. 
Around the end of the COVID-19 period (dashed orange line), Bit-
coin’s influence on gold (orange markers) becomes more prominent, 
particularly in the early 40 s window. This suggests that Bitcoin was 
beginning to assert itself as a competing store of value and increasingly 
influencing gold’s behavior.

The results indicate that gold, as a traditional safe-haven asset, 
dominated the causality relationship with Bitcoin during the initial 
stages of the COVID-19 pandemic, underscoring Bitcoin’s sensitivity to 
traditional macroeconomic indicators during periods of stress. How-
ever, the increasing influence of Bitcoin on gold toward the end of the 
pandemic signals a potential shift in investor sentiment, with Bitcoin 
emerging as a significant alternative asset.

5.2. CCM results

After determining the optimal delay (𝑇𝑝) from the time-delay CCM, 
we analyzed the convergence of the prediction skill (𝜌) over the same 
intervals. We show how prediction skills increase as the library size 
increases for each pair of assets. The results presented in Fig.  7(a) for 
Bitcoin-S&P 500 index and Fig.  7(b) for Bitcoin-gold, demonstrate that 
prediction skill (𝜌) improves with larger library sizes, reinforcing the 
presence of a causal relationship between these variables.

5.3. Surrogate testing

To confirm the significance of the convergence of these causal 
effects, we conduct a surrogate time-series analysis. We applied the 
same parameters used for CCM, maintaining the optimal embedding 
dimensions of the variables across all windows. No significant causal 
links were observed between the variables, as shown in Fig.  7(a) for 
Bitcoin-S&P 500 index and Fig.  7(b) for Bitcoin-gold. By comparing 
the (𝜌) values from the actual time series with those from the surro-
gate sets, we confirmed that the observed causal relationships – and 
their convergence – were statistically significant and were not simply 
artifacts of chance.

6. Conclusions

In this study, we applied the time delay convergent cross-mapping 
method to detect causality between Bitcoin and other financial assets 
such as the S&P 500 index and gold. Our goal is to explore how 
well CCM can identify the connections between Bitcoin prices and 
traditional financial assets over time. By combining CCM, simplex 
projection, and the S-Map algorithm with a sliding window approach, 
we aim to effectively identify and analyze nonlinear patterns in these 
time series over short periods.

To the best of our knowledge, there has been little research on the 
causal relationships between cryptocurrencies and financial markets 
using CCM. Existing studies focus on sentiment analysis to predict 
cryptocurrency prices and causality between the Chinese and Amer-
ican stock markets and global stock markets. We aim to explore the 
applicability of CCM in cryptocurrency and financial markets.

The effect of nonlinearity on the results is an important factor to 
consider. It is still uncertain whether chaoticity actually strengthens 
causal relationships or if it makes CCM more sensitive in detecting 
them. This distinction is important when applying this methodology 
because it could be a potential limitation in interpreting the results. 
We leave this investigation for future studies. Given the rapidly chang-
ing nature of cryptocurrencies and financial markets, further research 
9 
Fig. 7. In both plots 7(a) and 7(b) we see an increase in the prediction skill as 
the library size increases, suggesting its convergence and resulting in the causal 
relationship. Furthermore, in both cases, we see from the surrogate testing that these 
values are significantly lower than the values from the real time series, confirming the 
causal relationship.

is essential for a deeper understanding of these relationships. Fu-
ture studies could benefit from incorporating more dynamic data, 
exploring the causality among multiple variables, and distinguishing 
between positive and negative causal interactions. Moreover, the use 
of the Lyapunov exponent to measure chaoticity can extend our ap-
proach. Further analysis is essential to fully understand how these 
causal relationships change over different periods.
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