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Research Highlights 

► Conspicuous alongshore variability was found in 6 embayment’s from southern Portugal

► Cross- and longshore decoupling of morphological change determined by EOF analysis

► Response times increase for more constrained sites

► Increased skill of normalized wave power for morphodynamic process-response relations

► Geological boundaries considerably impact sediment transport and surfzone circulation
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Abstract 16 

Headlands, rock outcrops and engineering structures impact beach and nearshore dynamics of 17 

coastal embayments, inducing boundary effects that constrain the lateral and vertical beach variability. 18 

This study analyses morphological change in six embayed beaches with diverse levels of exposure to 19 

wave action and various degrees of geological control in the mesotidal coast of southwestern 20 

Portugal. The aim is to identify whether geological boundaries constrain the morphological behaviour 21 

of embayed beaches and assess whether their effects can be decoupled from datasets of 22 

morphological change. Topographic data, obtained over a two-year period on each of the six 23 

embayments, were analysed using empirical orthogonal functions (EOF) to decompose temporal and 24 

spatial variability in the datasets. First and second mode eigenfunctions were explored using time-25 

variable linear correlation analysis with several nearshore parameters that include hydrodynamic 26 

variables, sedimentary and geometric characteristics of each embayment in order to derive forcing-27 

response relationships. 28 

Our results demonstrate that natural geological boundaries constrain the morphological behaviour of 29 

embayed beaches, producing conspicuous alongshore variability in all embayments. Localized 30 

responses induced by lateral and vertical boundary interference with nearshore dynamics include 31 

beach rotation, topographically-controlled rip circulation and restrained profile fluctuation. Spatial 32 

decoupling in cross- and longshore responses is accompanied by a temporal decoupling in response 33 

times, both of which are slower in more constrained embayments (from 1 day in exposed embayments 34 

to 1 week or more in the most sheltered ones). Normalized wave power was correlated at the 99% 35 
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confidence level with the primary mode of morphological variability at most embayments, which 36 

represent 67% to 94% of the variance in the datasets. This correlation stresses the importance of 37 

combined parameterization of wave and tide forcing in process-response relations between 38 

hydrodynamics and morphological change for mesotidal coastal environments. Lateral and vertical 39 

geological boundaries exert their effects fundamentally by restraining longshore sediment transport, 40 

inducing cellular surf zone circulation and by impacting cross-shore sediment transport. It is postulated 41 

that decreasing sediment abundance and substrate depth intensify vertical boundary effects, while 42 

higher indentation and wave obliquity enhance the effects of lateral boundaries. 43 

44 
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1. Introduction49 

The presence of physical boundaries, in the form of headlands, rocky outcrops or even engineering 50 

structures, significantly impacts planform, sediment transport and morphodynamics of embayed 51 

beaches (Short, 1999). Suggestions that these geological constraints can be as important as dynamic 52 

forcing by waves and currents in determining contemporary beach morphology (Jackson et al., 2005) 53 

have, however, not been fully realised into the present thinking of beach morphodynamic behaviour 54 

(Jackson and Cooper, 2009). Influences of headlands, outcrops, and engineering structures in beach 55 

and surfzone dynamics are, nevertheless, frequently acknowledged regarding patterns of wave 56 

refraction and attenuation, development of cellular circulation, occurrence of sediment by-passing, and 57 

notably in the constraining of cross and longshore processes (e.g. Sanderson and Eliot, 1999; Short, 58 

1999; Larson and Kraus, 2000; Gallop et al., 2011b; Scott et al., 2011). 59 

While the presence of a geological framework is suggested to constrain the ability of a beach to 60 

fluctuate both laterally and vertically (Jackson and Cooper, 2009), effects of lateral boundaries, mainly 61 

due to headland control on equilibrium shoreline configuration (Silvester, 1985), have traditionally 62 

received most of the attention in the embayed beach literature (Ojeda and Guillén, 2008). Under 63 

oblique wave conditions, headland protection offers a decreasing lateral sheltering from wave action in 64 

the downdrift coastline, promoting the development of a segmented beach based on curvature, energy 65 

levels and even textural characteristics (Finkelstein, 1982; Phillips, 1985; Silvester and Hsu, 66 

1997).This lateral boundary effect downdrift of headlands, widely explored in coastal engineering, 67 



 

 

decreases as wave obliquity and curvature are reduced, with the entire beach experiencing similar 68 

morphological changes (Klein et al., 2010). Irrespective of wave approach angle, as headland spacing 69 

decreases and seaward protrusion increases, other lateral boundary effects progressively modify 70 

embayed beach response (Short, 1999). In the last decade several studies have investigated the 71 

effects of lateral boundaries in natural and artificial embayed beach morphodynamics, focusing on 72 

headland restriction and modification of longshore sediment transport that imposes medium- to short-73 

term beach rotation (e.g. Short et al., 2000; Masselink and Pattiaratchi, 2001; Klein et al., 2002, 2010; 74 

Ranasinghe et al., 2004; Harley et al., 2008, 2011; Ojeda and Guillén, 2008; Martins et al., 2010; Ruiz 75 

de Alegria-Arzaburu and Masselink, 2010; Thomas et al. 2010, 2011; Archetti and Romagnoli, 2011). 76 

However, while knowledge of lateral constraints has been advancing, effects of vertical boundaries in 77 

the form of submerged non-erodible geological structures (e.g. Larson and Kraus, 2000; Muñoz-Perez 78 

and Medina, 2010; Gallop et al., 2011), which also impact the morphological evolution and 79 

morphodynamic responses of embayed beaches, have received only limited attention. Few studies 80 

have, so far, explored the effects of geological control in beach systems underlain by rocks, often 81 

classified as perched beaches (Gallop et al., 2011b). Recently, Jackson and Cooper (2009) presented 82 

a conceptual model detailing the general mobility of beaches with varying degrees of underlying 83 

geological control. The authors propose three types of beaches based on the relative depth of the 84 

vertical boundary (unconstrained, semi-constrained and highly constrained). However, quantitative 85 

information about the thickness of sediment veneers below which vertical geological control becomes 86 

unimportant remains undetermined (Jackson and Cooper, 2009), and field data describing vertical 87 

boundary effects is still scarce (Gallop et al., 2011a).  88 

Various statistical methods have proved to be useful for extracting characteristic behaviour patterns 89 

from coastal morphological data (Kroon et al., 2008) and the application of empirical orthogonal 90 

functions (EOF) is considered particularly suitable for detecting and quantifying signals from different 91 

types of forcing and disturbances (Larson et al., 2003). EOF analysis has been used in beach studies 92 

for three decades, following the classical work by Winant et al. (1975), and was recently reviewed by 93 

Miller and Dean (2007a; 2007b). Those authors demonstrated the ability of EOF analysis to 94 

characterize lateral boundary effects in 20 to 45 km-wide coastal cells, while previous studies using 95 

EOF analysis had also highlighted the role of lateral boundaries in embayed beaches (e.g. Clarke and 96 

Eliot, 1982; Short et al., 2000). It is therefore naturally appealing to consider EOF analysis as a 97 

method for quantitatively characterising the effects of both lateral and vertical boundary effects.   98 



 

 

Building on the body of work on the analysis of boundary effects in beach dynamics, this paper 99 

explores the range of lateral and vertical geologic constraints on the medium-term (months to years) 100 

morphologic behaviour of embayed beaches. Due to similarities between natural headlands and 101 

outcrops with engineering structures, an increased knowledge of the mechanisms of geological beach 102 

control and boundary effects is important for understanding beach behaviour in the presence of 103 

engineering structures that intend to mimic natural geological control in embayed beaches (Hsu et al., 104 

2008). In this paper it is hypothesized that lateral and vertical geological boundaries constrain the 105 

morphological behaviour of embayed beaches and that their effects can be decoupled from datasets 106 

of embayed beach morphological change. To test this, four specific objectives are outlined: 107 

(i) Decompose the spatial and temporal variability of embayed beach morphology at diverse 108 

sites; 109 

(ii) Evaluate the forcing mechanisms driving the observed morphological change; 110 

(iii) Analyse the role of vertical and lateral geological constraints on the morphological 111 

response; 112 

(iv) Characterize boundary effects on the morphological behaviour of embayed beaches. 113 

 114 

To address the questions and objectives raised, this paper explores EOF analysis, which, although 115 

widely used to determine shoreline and beach profile evolution, has been scarcely applied to analyse 116 

the evolution of coastal areas controlled by headlands, rocky outcrops or underlying bedrock. Datasets 117 

of morphological change from six embayed beaches from southwestern Portugal are used. The 118 

beaches are clustered into two groups of three closely located embayments, with beaches within each 119 

group exposed to identical offshore forcing. However, due to geological constraints, each beach 120 

experiences different morphological changes. The quantitative analysis based on EOF decomposition 121 

is complemented by time-variable correlation analysis with several forcing parameters combining 122 

hydrodynamic variables, sedimentary and geometric characteristics of each embayment. 123 

 124 

 125 

2. Field site description 126 

The southwestern coast of Portugal is an indented rocky coastline with marked geodynamic contrasts 127 

between the western and southern sections. Despite both being bedrock-framed, with a prevalence of 128 

embayed beaches in coastal re-entrants fronting the cliffs or associated with small streams, both 129 

geological and environmental characteristics differ significantly between these two sections. Carved in 130 



 

 

Carboniferous shale and greywacke, the high-energy western coastline is directly exposed to the 131 

North Atlantic swell, with several intermediate to dissipative embayed beaches experiencing energetic 132 

conditions throughout the year. Mean offshore significant wave heights (Ho) between 1.5 and 2 m, and 133 

peak wave periods (Tp) between 9 and 13 s for summer and winter periods, respectively, induce a 134 

marked oceanographic seasonality (Costa and Esteves, 2010). Waves reach this coastline 135 

predominantly from north-westerly to westerly directions (Fig 1); yet nearly complete refraction of swell 136 

waves renders most of these embayed beaches swash aligned. Jurassic to Miocene calcareous cliffs 137 

constitute the majority of the rocky section of the southern coastline, which is relatively sheltered from 138 

direct exposure to the North Atlantic swell. Offshore wave conditions are moderate, with mean Ho 139 

around 0.9 m and mean Tp of 8 s (Costa et al., 2001). Slight variations occur between summer and 140 

winter conditions, but not as markedly as on the west coast. Dominant waves reach this coastline from 141 

a W-SW direction (Fig. 1), yet shorter period SE waves generated within the Gulf of Cadiz account for 142 

roughly a quarter of occurrences (Costa et al., 2001). This oceanographic setting imposes a markedly 143 

bimodal wave climate on the sediment-starved, intermediate to reflective south coast embayed 144 

beaches. Tidal conditions are identical and nearly synchronous for both sections of the coastline. Tidal 145 

regime is classified as semidiurnal and mesotidal, with maximum spring tidal range around 3.5 m. 146 

Six embayed beaches were selected as study sites, three in each section of the coastline (Fig. 1). 147 

West coast beaches, Amoreira, Mt. Clérigo and Arrifana, are all composed of well-sorted, medium 148 

sand, and being exposed to a high-energy wave climate these beaches are modally dissipative or 149 

intermediate skewed to dissipative. Amoreira beach is roughly 500 m-long, but is wide and backed by 150 

an extensive dune field. This embayment contains a bay-barrier estuary, with a small tidal stream that 151 

runs through a shallow channel adjacent to the southern headland. The beach has a persistent low 152 

tide terrace, occasionally crossed by the tidal stream, which creates a ridge and runnel-like 153 

morphology. Similarly to Amoreira, the Mt. Clérigo embayment faces directly the dominant NW waves. 154 

This beach is wide and backed by partly vegetated dunes in the south and central sections, while the 155 

northern part is narrow and backed by 50 m-high cliffs. The intertidal area is wide, with rocks 156 

outcropping in the southern section of the embayment. Arrifana is a swash-aligned beach, completely 157 

enclosed by up to 100 m-high cliffs, and partially protected from dominant NW waves by a prominent 158 

northern headland. A lag deposit, composed of coarse gravel and boulders, separates the narrow 159 

subaerial beach from the cliffs.  160 

The south coast embayments, Salema, Boca do Rio and Cabanas Velhas, are composed of relatively 161 

thin layers of medium to coarse sand, which generally overlie lag deposits of cobbles, boulders and/or 162 



 

 

shore platforms. These sediment-starved beaches are modally intermediate skewed to reflective. 163 

Salema beach is relatively unconstrained by protruding headlands, which allows it to range from 600 164 

to 1100 m in length. Being openly exposed to SSE, this beach receives waves from the dominant SW 165 

swell as well as SE sea, which generally impinge on the beach with significant angles. Boca do Rio is 166 

a short, narrow beach that corresponds to the terminal part of a small infilled estuary, with a temporary 167 

stream that crosses the eastern section of the beach following rainfall events. It is also roughly 168 

exposed to SSE, and the reduced seaward protrusion of the bordering headlands also enables waves 169 

from both dominant directions to reach the shoreline. Cabanas Velhas is also narrow, and backed by 170 

10 to 50 m-high cliffs. It is exposed directly to the dominant SW waves, being partially protected from 171 

SE waves by a protruding eastern headland.  172 

 173 

 174 

3. Data and methods 175 

3.1 Topographic data 176 

Topographic surveys along cross-shore beach profiles were performed bimonthly on the study sites 177 

between September 2007 and September 2009, and complemented by event-driven surveys 178 

immediately after storm events and two to three weeks later to monitor beach recovery. Three profiles, 179 

with variable alongshore spacing (Fig.1; Table 1), were measured in each embayment using RTK-180 

GNSS (Real Time Kinematic Global Navigation Satellite System). Surveys were undertaken at low tide 181 

and extended from the frontal dune or cliff base to the mean low water spring level (MLWS), 1.4 m 182 

below mean sea level (MSL), or further seaward. 183 

The selection of proxies to represent the overall beach response is non-trivial. Recent EOF analyses 184 

of alongshore beach variability have used datum-based shoreline positions, mainly extracted from 185 

time-exposure video images or profile surveys (e.g. Miller and Dean, 2007a; Fairley et al., 2009; Ruiz 186 

de Alegría-Arzaburu et al., 2010). These are, however, generally restricted to the upper portion of the 187 

cross-shore beach profile. Alternatively, EOF analyses of beach variability have also been performed 188 

using a sediment budget approach, using either digital elevation models (e.g. Larson et al., 1999; 189 

Haxel and Holman, 2004; Gómez-Pujol et al., 2011), or linear volume along cross-shore beach profiles 190 

(e.g. Clarke and Eliot, 1982, 1988). The latter proxy was selected in the present study. Profile volume 191 

was computed by trapezoidal integration with the upper limit defined by the profile surface and the 192 

MLWS level as lower limit. The MLWS level was chosen because it indicates a vertical 193 

morphodynamic separation of the beach profile for exposed beaches in southern Portugal, based on 194 



 

 

results presented by Almeida et al. (2011), due to the existence of a nodal point at this level that 195 

separates the cross-shore sectors dominated by berm and subtidal terrace changes.  196 

 197 

3.2 Empirical orthogonal function analysis 198 

EOF analysis is here applied to decompose the spatial and temporal variability within each dataset. 199 

Application of this multivariate statistical technique, often referred as Principal Component Analysis, to 200 

coastal geomorphology datasets has been widely described (e.g. Winant et al., 1975; Vincent et al., 201 

1976; Aubrey, 1979; Wijnberg and Terwindt, 1995; Muñoz-Pérez et al., 2001; Dean and Dalrymple, 202 

2002; Larson et al., 2003; Miller and Dean, 2007a). In brief, a data matrix y(s,t) can be represented by 203 

a series of linear combinations of spatial and temporal functions, denoted by: 204 

 205 

             n 206 
y (s,t) = ∑ nk ek (s) ck (t)                           (1)          207 

k=1 208 
 209 

where ek (s) are the kth spatial eigenfunctions, ck (t) are the kth temporal eigenfunctions, or temporal 210 

coefficients, and nk the normalizing factor. The new sets of variables, ek (s) and ck (t), are orthogonal 211 

and therefore, uncorrelated, and ordered in terms of their ability to explain the variance in the original 212 

dataset. EOF application allows the dimensionality of a dataset to be reduced (Larson et al., 2003), as 213 

generally it is necessary to retain only the first few eigenfunctions, which will account for most of the 214 

variance, providing a compact representation of the original data (Miller and Dean, 2007a).  215 

The way the data matrix is specified for EOF analysis is central to the outcome of the calculations 216 

(Clarke and Eliot, 1988). The most important distinction involves the scaling of the variables, which 217 

were here de-meaned prior to the calculations. Such choice of scale determines that the matrix used 218 

to perform the EOF analysis is a covariance matrix. This is the most common option for EOF 219 

applications to coastal morphologic data (Larson, et al., 2003), as detailed in recent studies (e.g., 220 

Kroon et al., 2008; Fairley et al., 2009; Hansen and Barnard, 2010; Gómez-Pujol et al., 2011). The 221 

EOF modes, or eigenfunctions, obtained are thus considered in terms of  changes in beach response 222 

in regard to the mean (ΔVb
mean(t) given by Vb(ti) – Vb

mean, where Vb is the volume for each 223 

survey date ti and Vb
mean is the time averaged volume), which otherwise would tend to dominate 224 

the signal (Larson et al., 2003). The first EOF modes are often given physical interpretations based on 225 

resemblance of the spatial eigenfunctions with morphological features (e.g. Winant et al., 1975, 226 



 

 

Aubrey, 1979), or correlation of temporal eigenfunctions with forcing parameters (e.g. Miller and Dean, 227 

2007b; Fairley et al., 2009).  228 

 229 

3.3 Comparison with forcing parameters 230 

Establishing relationships between different variables can provide insights into the behaviour of a 231 

beach and how it responds to forcing (Larson et al., 2003). Accordingly, a set of commonly used 232 

hydrodynamic and morphodynamic parameters were selected to characterize the forcing and relate it 233 

to the temporal eigenfunctions. The variables considered here combine wave, tide, sediment 234 

characteristics and embayment geometry, and details of their collection, transformation and 235 

application are described below. 236 

 237 

3.3.1 Offshore waves and tides 238 

Wave data have been collected by Instituto Hidrográfico (IH) for Portuguese western and southern 239 

offshore coastal waters using Datawell directional wave buoys near Sines and Faro (Fig. 1), located 240 

both roughly 7 km from shore in approximately 100 m water depths. The buoys provide measurements 241 

of offshore significant wave height (Ho), peak spectral period (Tp) and peak wave direction (θo). Gaps 242 

in the measured wave record, accounting for roughly 15% at Sines and 5% at Faro buoy for the 243 

duration of the study, where filled using modelled wave data from WANA deepwater network (Lahoz 244 

and Albiach, 2005), provided by Puertos del Estado for grid points near the wave buoys (Fig. 1). 245 

Linear correlation analysis indicated a statistically significant correlation between observed and 246 

modelled wave heights (R≥ 0.82 for p< 0.01; RMSE ≤ 0.4m). 247 

Tide level observations and predictions for the west coast beaches were obtained from the IH tide 248 

gauge in Sines (Fig. 1). The amount of missing records in the dataset was reduced, around 2%, and 249 

these were filled using the predicted tide levels at Sines. Equipment malfunction in Lagos tide gauge 250 

(Fig. 1) truncated the observed tide levels, rendering it useless, and predicted tide levels at Lagos 251 

were used for the south coast beaches. 252 

 253 

3.3.2 Forcing parameters 254 

Numerous dimensional and non-dimensional hydrodynamic and morphodynamic parameters are often 255 

used for characterizing the forcing driving beach changes. Ten parameters are considered here, 256 

namely breaker height (Hb), breaker angle (θb), peak wave period (Tp), wave steepness (Ho/Lo), wave 257 



 

 

energy (Eo), wave power (Po), normalized wave power (Pno), alongshore wave energy flux (Plb), 258 

dimensionless fall velocity (Ω) and the dimensionless embayment scaling parameter (δ’).  259 

Deepwater conditions (Ho, Tp and θo) are provided directly from the buoy measurements, while 260 

breaking conditions (Hb and θb) were computed using the formula presented by Larson et al. (2010), 261 

developed to derive wave properties at incipient breaking. The use of this simplified solution that 262 

employs the conservation of wave energy flux from an offshore location combined with Snell’s law for 263 

wave refraction disregards wave diffraction around headlands. Although diffraction is an important 264 

factor in coastal embayments, this solution was chosen given the reduced headland extend for most 265 

study sites and the assumption that the use of such simplified solution is deemed suitable for spatial- 266 

and time-averaged shoreline response studies, as it was found adequate to explore the relationships 267 

between wave forcing and the temporal eigenfunctions at the scale of interest (meters to kilometres / 268 

months to years) (Miller and Dean, 2007b). Depth limited breaking is imposed with the commonly used 269 

depth breaker ratio of 0.78. Wave angles were converted in positive/negative angles for waves 270 

approaching northwards/southwards to beach normal for the west coast beaches, and waves 271 

approaching westwards/eastwards to beach normal for the south coast beaches. 272 

Wave steepness, Ho/Lo, was calculated using linear wave theory with Lo, the deepwater wave length, 273 

given by: 274 

 275 

Lo = (gTp
2) / (2π)                            (2) 276 

 277 

where g is the acceleration due to gravity. Offshore wave energy density (Eo), or simply wave energy, 278 

was also computed considering linear wave theory: 279 

 280 

Eo = (1/8) pgHo
2                (3) 281 

 282 

where ρ is the density of water. Combining wave energy with the deepwater group velocity (Cg) it is 283 

possible to compute the rate at which wave energy is transferred by moving waves, the wave power 284 

(Po): 285 

 286 

Po = ECg                 (4) 287 

 288 



where Cg is given by 289 

290 

Cg = (1 / (4π)) gTp      (5) 291 

292 

Recognizing the importance of tidal levels for coastal morphological evolution in Southern Portugal, 293 

Morris et al. (2001) proposed the normalized wave power (Pno) in order to include the tidal range 294 

according to: 295 

296 

Pno = Po (ηdtr / ηstr)      (6) 297 

298 

where ηdtr is the maximum daily tidal range and ηstr is the maximum spring tidal range. This parameter 299 

conveniently reflects the enhanced wave erosion potential during spring tides, restricting it for lower 300 

tidal ranges (Morris et al., 2001). 301 

In order to obtain an indicator of the alongshore sediment transport, the alongshore component of the 302 

wave energy flux (Plb) was computed using: 303 

304 

Plb = (EbCg) sinθb cosθb      (7) 305 

306 

where Eb was obtained for breaking conditions according to Eq. (3) replacing Ho by Hb, and Cg as 307 

given by the shallow water approximation to wave group velocity: 308 

309 

Cg = √(ghb)      (8) 310 

311 

where hb is the water depth at breaking. According to the conversion of wave directions to wave 312 

angles positive/negative alongshore energy fluxes correspond to southward/northward transport for 313 

west coast beaches, and eastward/westward transport for the south coast beaches. 314 

Besides the purely hydrodynamic parameters presented above, the nearshore forcing can also be 315 

represented by parameterizations that incorporate sedimentary characteristics of the embayments. A 316 

natural parameter to consider, for its generalized application to beach studies, is the dimensionless fall 317 

velocity (Ω) (Gourlay, 1968; Dean, 1973): 318 

319 



 

 

Ω = Hb / (WsTp)                 (9) 320 

 321 

where Ws is the sediment fall velocity, computed according to Soulsby (1997) using the median grain 322 

diameter (d50) averaged for each embayment from beach face samples collected seasonally during 323 

the two year study period (Table 1).  324 

All the aforementioned parameters are well established in the literature and have proven skilfulness in 325 

characterizing morphological changes in the coastal environment. However, no parameter considers 326 

explicitly the impact of embayment dimensions and geometry in characterizing the nearshore 327 

environment. Short (1996; 1999) based on unpublished work by Marteens and collaborators presented 328 

the dimensionless embayment scaling parameter (δ’), which relates the embayment configuration to 329 

the incident breaking wave conditions according to: 330 

 331 

δ’ = Sl
2
 / 100Cl Hb             (10) 332 

 333 

where Sl is the embayment shoreline length and Cl is the chord length (distance between headlands). 334 

This empirical approximation was derived from morphometric analysis of embayed beaches in order to 335 

describe parametrically the degree of headland impact on surf zone circulation considering a typical 336 

surfzone gradient of 0.01 (Short and Masselink, 1999). 337 

 338 

3.3.3 Correlation analysis  339 

Linear correlation analysis was used to test the hypothesis that EOF modes have a physical meaning, 340 

and are not simply by-products from the mathematical decomposition. Accordingly, if the temporal 341 

eigenfunctions of the EOF modes are related to the time series of at least one of the forcing 342 

parameters considered, their physical meaning should be elucidated by the characteristics of such 343 

forcing parameters (Miller and Dean, 2007b). Correlation between variables was considered 344 

statistically significant at the 95% confidence level when the Pearson’s product moment correlation 345 

coefficient (R) exceeded the critical level (Rcrit 95%) based on two-tailed normal distribution for n-2 346 

degrees of freedom (DOF) (Table 1). More stringent correlation (Rcrit 99%), at the 99% confidence level, 347 

is further used in order to distinguish the strongest correlations between the temporal eigenfunctions 348 

and the forcing parameters.  349 



 

 

As beach changes occur at different frequencies and response times may be site specific, a variable 350 

averaging interval for correlation with the temporal eigenfunctions was implemented. The forcing 351 

parameters were averaged over 1 to 30 days prior to each survey date, regardless of survey intervals, 352 

following Hansen and Barnard (2010) and Alvarez-Ellacuria et al. (2011). As there is no consensus 353 

about the optimal averaging interval for correlation of forcing parameters with temporal eigenfunctions 354 

(or the beach changes they are supposed to represent), the varying averaging window implemented 355 

provides a more flexible approach, enabling further exploration of the response times of each beach. 356 

Moreover, by extending from 1 to 30 days (D), the varying averaging window allows the incorporation 357 

of daily, weekly and monthly averaging intervals as in other studies (e.g. Miller and Dean, 2007b; 358 

Quartel et al., 2008). The averaging interval that produced the first peak in correlation above the 359 

critical level was assumed to be the optimal time scale of beach response, regardless of the fact that 360 

higher correlation may be obtained for larger averaging windows (refer to Figure 2 for an example of 361 

how peak correlation was obtained). The reasoning behind this option is that larger averaging intervals 362 

reflect responses to the seasonal variation in wave climate, as suggested by Miller and Dean (2007b), 363 

while the first peak in correlation more likely refers to the effects of boundaries in embayed beach 364 

response.  365 

 366 

 367 

4. Results 368 

The results of the EOF decomposition indicate that the first two eigenfunctions explain the majority of 369 

morphologic change, accounting for over 95% of the total variability in each embayment (Table 2). The 370 

first eigenfunction is undoubtedly the most important, contributing 67% to 94% of the total variance of 371 

each dataset, while the second eigenfunction only explains 4% to 29%. The first two eigenfunctions, 372 

e1(s,t) and e2(s,t), will be analysed in detail bellow, based on the interpretation of spatial patterns and 373 

temporal amplitudes for each embayment (Figs. 4-9), and evaluation of their relation with forcing 374 

parameters (Table 3).  375 

Over the two-year monitoring period, wave conditions for both sections of the Portuguese 376 

southwestern coastline were generally characterized by a concentration of energetic conditions in the 377 

periods between November and April, while during the remaining months waves are generally lower, 378 

although Ho frequently exceeded 2 m in the west coast and 1 m in the south coast (Fig. 3). Peak wave 379 

directions were mostly constant year-round from the NW quadrant in the western section, while for the 380 

southern coast there was a striking alternation between SW and SE conditions (Fig. 3). Most 381 



 

 

significant events, highlighted in Figure 3, occurred due to rapid succession of high-energy conditions 382 

(storm-groups) and waves in excess of 6 m and 4 m for western and southern sections, respectively. 383 

Such events were concentrated in the first year of monitoring in the southern coast, while around the 384 

western section the most noteworthy event, composed by a group of five storms, occurred later, 385 

between late January and mid-February of 2009. This difference in the timing of the most extreme 386 

wave conditions had significant implications in the beach behaviour for the two sections of the 387 

coastline, as detailed in the following sections. 388 

 389 

4.1 Amoreira  390 

The primary mode of variability in Amoreira beach, representing 86% of the variance, consists of a 391 

nearly uniform alongshore pattern of beach response. The spatial eigenfunction e1(s) represents a 392 

coherent pattern of morphological change along the entire embayment, although with increased 393 

variability in the northern and central sections (Fig. 4). Despite this slight alongshore variation, it is 394 

evident that the beach responds as a whole, with changes characterized by alongshore uniform 395 

accretion and erosion. From January 2009, the temporal eigenfunction c1(t) exhibits a marked 396 

decrease (Fig.4), most likely related to extreme storm events along the southwestern Portuguese 397 

coast reported in Loureiro et al. (2011). Coefficients for c1(t) remained negative with reduced variation 398 

throughout the rest of the monitoring period. The temporal variability of the first eigenfunction is only 399 

significantly correlated with the normalized wave power (Pno) (Table 3). The negative correlation 400 

between c1(t) and Pno, with a peak correlation value of R = -0.51 at D = 1 day, highlights an immediate 401 

inverse association between the normalized wave power and beach volume.  402 

The second mode of variability e2(s,t) accounts for 11% of the variance and exhibits opposing 403 

responses for the northern and southern beach ends. This alongshore non-uniform pattern of e2(s) 404 

presents a nodal point located near the centre of the embayment (Fig. 4), and higher variability for the 405 

southern section of the beach, adjacent to the stream inlet. Phase shifts between opposing ends of 406 

embayed beaches are associated with rotation phenomena (Short, 1999; Klein et al., 2002), and at 407 

Amoreira positive/negative phases correspond to clockwise/anticlockwise rotation about the nodal 408 

point in the central section of the beach. Mode two temporal eigenfunction c2(t) is strongly correlated 409 

with several forcing parameters (Table 3). Highly significant correlations include the forcing 410 

parameters Hb, Tp, Eo, Po and δ’, while Plb and Ω are also significantly correlated but at 95% 411 

confidence level. The averaging windows for peak correlations with the aforementioned parameters 412 

are similar, ranging from 6 to 8 days preceding surveys. Correlation is positive for all these parameters 413 



 

 

(except δ’), implying that increases in Hb and Tp, with concomitant increases in Eo, Po and Ω (and 414 

decrease in δ’) are translated into a clockwise rotation of the embayment with sediment transferences 415 

from the northern section towards the southern section. Anti-clockwise rotation occurs for low waves, 416 

and is possibly mediated by the increasing influence of stream discharge and tidal prism under low 417 

waves, allowing the development of a secondary stream channel flowing northwards along the 418 

foreshore (Freire et al., 2011). Although breaker angle alone lacks any significant correlation with c2(t), 419 

correlation with Plb provides additional support to the rotation interpretation, as a positive linear 420 

relationship implies clockwise (anticlockwise) rotation due to positive-southwards (negative-421 

northwards) alongshore wave energy flux. 422 

 423 

4.2 Mt. Clérigo  424 

The spatial eigenfunctione1(s) at Mt. Clérigo beach indicates a uniform pattern of morphological 425 

change, with a slightly higher variability in the central section (Fig. 5). Similarly to Amoreira beach, the 426 

combined eigenfunctions for e1(s,t) (Fig. 5), demonstrate an embayment-wide morphological 427 

response, with a seasonal signal. Accretion occurs during summer conditions and erosion in winter. 428 

Again, the negative peak after January 2009 marks the occurrence of extreme storm events. This 429 

temporal variability of c1(t) is significantly correlated with Pno (R = -0.65 at D = 1). The strong negative 430 

correlation peaking at the shorter averaging window suggests a prompt morphological response to 431 

changing wave conditions when normalised by the tide.  432 

The second mode eigenfunction for Mt. Clérigo is alongshore non-uniform (Fig. 5). This alongshore 433 

non-uniform pattern is consistent with beach rotation behaviour, characterized by the out of phase 434 

response between both ends of the embayment (Fig. 5). Significant correlations were found between 435 

c2(t) and the parameters Hb, Ω and δ’, with peak values obtained for D = 1 day. While the spatial 436 

eigenfunction e2(s) is consistent with a rotation scenario, the absence of correlation between c2(t) and 437 

the two forcing parameters that include directional information, θb and Plb, indicates that rotation is not 438 

likely related with directional forcing. Highly significant correlation with δ’ does, however, suggest that 439 

surf zone circulation, with development of rip current systems driven by variations in the obliquity of 440 

wave approach as proposed by Loureiro et al. (2012), may be the cause of this apparent rotation 441 

between opposite extremes of the beach. 442 

 443 

4.3 Arrifana  444 



 

 

Arrifana is the longest yet most indented embayment among the westerly exposed beaches. Mode 445 

one eigenfunction e1(s,t) for this beach follows the general pattern identified for the other embayments. 446 

The spatial variabilitye1(s) indicates that the beach responds uniformly with both ends experiencing 447 

similar, but more extreme, changes than the central section (Fig. 6). The timing of these changes 448 

displays identical seasonal signal to the one described for Mt. Clérigo and Amoreira. Several forcing 449 

parameters are significantly correlated with c1(t), (Hb, Tp, Eo, Po, Pno, Plb and Ω). Given the particularly 450 

strong negative correlation with Pno, already noted for the other embayments, but with a wider peak 451 

averaging window (D = 12), it is likely that the higher confinement of Arrifana promotes a delayed 452 

morphological response comparing to the more exposed embayments, possibly due to enhanced 453 

attenuation of the local wave climate.  454 

Mode two spatial eigenfunction e2(s) presents an alongshore non-uniform behaviour, characterized by 455 

higher variability in the central section (Fig. 6). Two nodal points occur near the extremities of the 456 

beach, lessening the magnitude of changes close to site boundaries for this EOF. None of the forcing 457 

parameters is significantly correlated with c2(t), which restricts the physical interpretation of this mode. 458 

Development of circulation cells at the extremities of the beach with onshore re-attachment of sub- to 459 

inter-tidal crescentic bars in the central section has been observed in this embayment. These possibly 460 

embody a mechanism for beach recovery following rip-induced erosion reported during storms at 461 

Arrifana (Loureiro et al., 2012). However, such hypothesis cannot be confirmed, as the forcing 462 

parameter δ’, which characterizes embayment surfzone circulation, provided no statistically significant 463 

support.  464 

 465 

4.4 Salema  466 

Salema is the embayment where e1(s,t) ranks the lower relative importance, representing roughly 67% 467 

of the variance (Table 2). Absence of nodal points for e1(s) indicates that morphological changes are 468 

synchronous at the entire embayment, with the central and western sectors concentrating the bulk of 469 

the variability (Fig. 7). Correlation of c1(t) is statistically significant with several parameters, as 470 

indicated in Table 3, particularly those derived from an energetics-based approach to hydrodynamic 471 

forcing. The stronger correlations are again obtained with Pno, displaying a negative signal and peak 472 

correlations at D = 10 days.  473 

Given the lower relative importance of e1(s,t), mode two eigenfunction e2(s,t) has a more significant 474 

contribution for explaining the variability in Salema dataset (29%). This eigenfunction is consistent with 475 

the beach rotation scenario, with a nodal point close to the central section of the beach (Fig. 7). The 476 



 

 

combined spatial and temporal eigenfunctions also support the hypothesis of beach rotation, and out-477 

of-phase behaviour is evident in Fig. 7. Correlation analysis of c2(t) with forcing parameters reinforces 478 

this interpretation, with direction-dependent parameters (θb and Plb) presenting significant correlations, 479 

peaking at 6 to 7 days preceding surveys (Table 3). Given the strong association between direction 480 

and wave period for the southern Portuguese coast (WSW swell with longer Tp or locally generated SE 481 

sea with shorter Tp), both Tp and Ho/Lo present very significant correlations with c2(t), further 482 

emphasising the wave-forced beach rotation scenario.  483 

 484 

4.5 Boca do Rio 485 

The primary mode of variability e1(s,t) in Boca do Rio presents an alongshore uniform pattern of beach 486 

change, with slight differences between beach sectors, generally describing a coherent response 487 

throughout the entire embayment (Fig. 8). The first mode eigenfunction is marked by a decrease in the 488 

temporal amplitude c1(t) in the first six months of study, followed by an invariant trend, occasionally 489 

disturbed by short lived peaks of beach accretion (Fig. 8). This unusual temporal variability is not 490 

correlated to any forcing parameter (Table 3) hampering the physical interpretation of mode one in 491 

Boca do Rio.  492 

Mode two spatial eigenfunction e2(s) for Boca do Rio follows the pattern of beach rotation previously 493 

described. The strong correlation of c2(t) with θb and Plb, for identical averaging windows (Table 3), 494 

confirms the hypothesis of a short-term beach rotation scenario at Boca do Rio.  495 

 496 

4.6 Cabanas Velhas 497 

Cabanas Velhas primary mode of variability e1(s,t) is also characterized by a coherent alongshore 498 

pattern with higher variability for e1(s) in the eastern sector (Fig. 9). The chronology of the changes 499 

described for Cabanas Velhas c1(t) is analogous to Boca do Rio c1(t), but with a sharper decrease in 500 

the first few months of study. Strong negative correlations were obtained between c1(t) and Pno, 501 

peaking at D = 4 days, reflecting the short-term inverse response to wave conditions along the entire 502 

embayment, enhanced by the effects of tidal range variation.  503 

The second mode spatial variability e2(s) is alongshore non-uniform, with two nodal points closer to 504 

the extremes and an area of higher variability in the central section of the embayment (Fig. 9). 505 

Variability of e2(s,t) is consistent with the occurrence of erosion and accretion pulses in the central 506 

section of the beach, possibly with a partial contribution to and from the eastern section. Positive 507 

correlation values (R = 0.36 to 0.37) and long averaging windows (D = 17 to 18 days) between c2(t) 508 



 

 

and wave forcing parameters Hb, Eo, Po, Ω, suggests that accretionary pulses might occur under 509 

moderate to high waves. Although necessarily below the storm threshold value (Ho ≥ 3 m), higher than 510 

average wave forcing is likely to promote the transfer of sediment from the subtidal terrace to the 511 

intertidal beach in the bedrock fronted central section of Cabanas Velhas, similar to the effect of large 512 

swells in reef-fronted beaches (Miller and Fletcher, 2003). 513 

 514 

 515 

5. Discussion 516 

5.1 Forcing parameters and response times 517 

Selection of forcing parameters for exploring beach and nearshore morphological behaviour is not 518 

obvious or straightforward. Other parameters, reflecting similar nearshore forcing, where considered, 519 

for example, by Miller and Dean (2007b) and Fairley et al. (2009) in comparable EOF analysis of 520 

morphological change. However, observed significant correlations at the 99% confidence level with at 521 

least one of the selected parameters for most eigenfunctions substantiates the validity of our choices. 522 

In the results presented here, only two eigenfunctions, c2(t) in Arrifana and c1(t) in Boca do Rio, were 523 

uncorrelated with the forcing parameters selected. This highlights the case for caution in the 524 

interpretation of EOF decompositions, as physical significance of EOF modes can be misleading 525 

(Dommenget and Latif, 2002). However, when statistically significant correlation can be identified with 526 

meaningful forcing parameters, as shown by the majority of the eigenfunctions analysed, physical 527 

interpretation of EOF modes should be considered with confidence (Miller and Dean, 2007b).   528 

From all parameters considered, a marked consistency in strong negative correlation was identified 529 

between the first mode eigenfuntion and normalized wave power (Pno) in all embayments, with the 530 

exception of Boca do Rio. Such correlation agrees with the findings of Fairley et al. (2009), where the 531 

first mode eigenfunction of shoreline variability behind detached breakwaters was also negatively 532 

correlated with a proxy combining wave and tidal forcing. Pno always provides the stronger correlation 533 

with c1(t), highlighting that the incorporation of tidal range variability for normalizing wave power 534 

enhances the explanatory ability of this parameter to describe morphological behaviour, as suggested 535 

by Morris et al. (2001). This has implications for energetics-based modelling of coastal changes, as 536 

this reasoning might be applied to template models of coastal change in meso to macrotidal beaches 537 

(e.g. Yates et al., 2009). 538 

Recent modelling and data-analysis work using EOFs on a Mediterranean embayed beach by 539 

Alvarez-Ellacuria et al. (2011) indicates a decoupling of response times in morphological behaviour. In 540 



 

 

their results, longshore response attributed to the second mode eigenfunction lags cross-shore 541 

response associated with the first mode eigenfunction by three days. This decoupling pattern is 542 

noticeable in several of the study sites presented here, although not holding consistently for all 543 

embayments. Most cases, however, appear to reflect a lag in response times, as evidenced for 544 

Amoreira with the first temporal eigenfunction peak correlation at D = 1 day, while the second mode 545 

eigenfunction peaks at D = 7 to 8 days (Table 3). Less frequently, both modes peak at the same 546 

averaging interval (e.g. Mt. Clérigo with D = 1). Such site-specific response times are likely the result 547 

of diverse degrees of exposure and compartmentalization of the various embayments. The general lag 548 

for mode two confirms the suggestions of Alvarez-Ellacuria et al. (2011) that the cross-shore and 549 

longshore components elucidated do not respond simultaneously, and also of Miller and Dean (2007b) 550 

that each mode has a particular response time. Assumptions that on decadal timescales cross-shore 551 

processes have a shorter-term response time that longshore processes (Lazarus and Murray, 2007), 552 

seem to be applicable also on monthly to seasonal timescales even for highly localized responses.  553 

Compartmentalization appears, however, to significantly influence response times, with longer 554 

response times in more constrained embayments (e.g. Arrifana).  555 

Given the inclusion of dedicated post-storm surveys in the analysis, a potential bias for faster 556 

response times was further investigated considering exclusively the bi-monthly surveys. Results, not 557 

shown here, indicate varied behaviour between embayments. Mt. Clérigo and Arrifana presented 558 

identical response times considering all surveys and bimonthly surveys only, while Amoreira and Boca 559 

to Rio presented slower response times, which increased between 1 and 11 days. In contrast, at 560 

Salema response times were 4 to 10 days faster considering only the bimonthly surveys, while at 561 

Cabanas Velhas no statistical significant correlations with forcing parameters were found considering 562 

exclusively bi-monthly surveys. The reduced number of bimonthly surveys (13) compared to the entire 563 

dataset (20 to 33; Table 1) implied higher thresholds for statistical significant correlations (Rcrit 95% > 564 

±0.55 and Rcrit 99% > ±0.68), which justify the results observed in Cabanas Velhas, as correlations were 565 

already low considering the entire dataset (Table 3). Despite variations in response times, for which no 566 

clear storm-related bias was evidenced, most notable changes pertain to the 22% reduction in the 567 

forcing parameters for which statistical significant correlations were identified. Again, reduction in 568 

survey number and, consequently, more stringent thresholds for statistical significant correlation 569 

justifies such variation.  570 

 571 



 

 

5.2 Mechanisms for alongshore variability 572 

Although early spatial and temporal decompositions of morphological variability using EOF analysis in 573 

embayed beaches provide indications that morphological change is associated with nearshore 574 

circulation cells (Clarke and Elliot, 1982, 1988; Clarke et al., 1984), most recent studies using this 575 

technique have identified beach rotation as the core mechanism of alongshore non-uniformity in 576 

embayed beaches (Short et al., 2000; Munõz-Pérez et al., 2001; Short and Trembanis, 2004; Harley 577 

et al., 2008; Ruiz de Alegría-Arzaburu et al., 2010). The results shown here, with four beaches 578 

presenting second mode eigenfunctions typical of rotation mechanisms, further emphasize the role of 579 

beach rotation as a prevailing mode of alongshore variability in embayed beaches. Our results also 580 

confirm the ability of EOF analysis to extract the rotation component from diverse datasets. Wave 581 

direction-forced beach rotation is, however, not consistently supported for all cases. While at Salema 582 

and Boca do Rio statistically significant correlation of c2(t) with both θb and Plb translates a clear 583 

directionally-forced rotation behaviour, expectable under the bi-directional wave climate of southern 584 

Portugal, the out of phase pattern observed also in Amoreira and Mt. Clérigo is unlikely to be 585 

attributable to a similar mechanism.  586 

The appearance of beach rotation (when the extremes of an embayment are out of phase and a nodal 587 

point or transition zone exists (Klein et al., 2002)), can in fact be promoted by physical processes other 588 

than directionally forced alongshore sediment transport as recently demonstrated by Harley et al., 589 

(2011). Given the strength and signal of the correlation between various forcing and c2(t) at Amoreira 590 

(Table 3), clockwise rotation occurs in this embayment under energetic waves, while anti-clockwise 591 

rotation develops during low wave conditions. Such behaviour is most likely the result of complex non-592 

linear interactions involving wave conditions, tidal prisms and fluvial discharge of the shallow coastal 593 

stream within Amoreira embayment (Oliveira et al., 2010; Freire et al., 2011). In Mt. Clérigo, the surf 594 

zone circulation is suggested as the driver of the out-of-phase response within the embayment for the 595 

second mode eigenfunction. Three-dimensional cellular circulation, with extensive rip current systems, 596 

has been shown to determine morphological change in Mt. Clérigo (Loureiro et al., 2012). The 597 

formation, evolution and clogging of rip and feeder channels, along with the displacement of nearshore 598 

bars drives alongshore non-uniform variability producing an inverse response between the extremes 599 

of the embayment, similar to findings of Ojeda and Guillén (2008). Strong correlation of c2(t) with δ’ at 600 

Mt. Clérigo (Table 3) further validates this hypothesis. 601 

 602 

5.3 Boundary effects 603 



 

 

Presumed independence of two- and three-dimensional components in coastal morphological change 604 

renders EOF decomposition a particularly useful tool for coastal research (Ruessink et al., 2000). 605 

Accordingly, nearly all studies of alongshore variability using EOFs in embayed beaches succeeded in 606 

isolating the cross-shore component present in the first eigenfunction, describing the bulk of the 607 

variability, from the alongshore components in lower-rank eigenfunctions (e.g. Clarke and Eliot, 1982; 608 

Short et al., 2000; Harley et al., 2008; Alvarez-Ellacuria et al., 2011). General acceptance of this 609 

decoupled morphological response elucidated by the EOF analysis provides a further opportunity to 610 

examine the boundary effects in the morphological response of embayed beaches. Vertical boundary 611 

effects should be revealed by the variability of the first mode eigenfunction, assumed to represent two-612 

dimensional cross-shore response, while the second mode eigenfunction, embodying three-613 

dimensional alongshore response, ought to portray the effects of lateral boundaries 614 

For all embayments presented here the first mode eigenfunction corresponds to a roughly uniform 615 

spatial trend without zero crossings (or nodal points), although not necessarily linear. In the present 616 

context, variability in the spatial amplitudes of this eigenfunction is presumed to represent variable 617 

two-dimensional geological constraints. Lower e1(s) amplitudes are indicative of the limitation to free 618 

profile fluctuation by underlying hard rock (Clarke and Eliot, 1982; Vousdoukas et al., 2007), implying 619 

an effective vertical boundary control on beach profile evolution. The specific mechanisms that 620 

determine this constrained dynamics are not yet adequately understood (Gallop et al., 2011b), as they 621 

are a result of complex morphodynamic interference of rocky hard-bottoms with beach morphologic 622 

change (Larson and Kraus, 2000; Vousdoukas et al., 2007). However, it is generally considered that 623 

profile behaviour is dependent on the depth and shape of the underlying geological control (Jackson et 624 

al., 2005; Jackson and Cooper, 2009). As such, significant differences exist between the moderate-625 

energy sediment-deprived south coast beaches and the high-energy sediment-richer west coast 626 

beaches. Considering both south and west coast embayments in the conceptual framework of 627 

Jackson and Cooper (2009), our results place west coast dissipative embayments within the vertical 628 

unconstrained beach type, while Salema more likely conforms to the semi-constrained and Boca do 629 

Rio and Cabanas Velhas are undoubtedly in the highly-constrained beach type. 630 

South coast embayments, Salema, Boca do Rio and Cabanas Velhas, clearly show evidence of 631 

vertical boundary effects, and sectors where underlying geological control is shallower present 632 

reduced e1(s) amplitudes, increasing towards sections with deeper sediment veneers. This gradation 633 

can be observed in all three embayments, with the eastern sector in Salema and the western sector in 634 

Boca do Rio and Cabanas Velhas displaying minimums in the first mode spatial eigenfuntion (Fig. 7 to 635 



 

 

Fig. 9). Variable depths of the vertical boundary also imply diverse temporal response for 636 

hydrodynamic forced profile modification. Within the south coast beaches, Salema displays temporal 637 

variability of c1(t) broadly consistent with a seasonal forced response, while Boca do Rio and Cabanas 638 

Velhas present roughly invariant trends for c1(t) following severe erosion in the first months of 639 

monitoring. Muñoz-Perez et al. (2010) suggested that geologically controlled beach profiles are prone 640 

to erosive trends and less able to recover during accretionary periods, and this appears to be the case 641 

in the south coast beaches presented here. Thin veneers of sediment covering the underlying rocky 642 

substrate in Boca do Rio and Cabanas Velhas were easily eroded in the first months of monitoring. 643 

Recovery was limited and both embayments remained depleted by the end of the monitoring period. 644 

The limited sediment contained within Salema embayment is, nonetheless, sufficient to enable the 645 

development of a sub-aerial beach profile that varies seasonally with significant recovery volumes, as 646 

demonstrated by the variability of c1(t). Such varied behaviour of south coast embayments confirms 647 

the suggestions of Muñoz-Perez et al., (2010), further emphasizing an enhancement in recovery ability 648 

as sediment depth increases. 649 

Vertical boundary effects in west coast beaches are less readily apparent from the first mode 650 

eigenfunction. The underlying geological control is significantly deeper and was never exposed for 651 

most profiles, yet there are variations in the spatial amplitude of the first mode eigenfunctions, 652 

particularly noticeable in Arrifana embayment. Mechanisms other than direct influence of underlying 653 

rocky substrate must be considered for the west coast beaches. The highly three-dimensional 654 

nearshore behaviour of these high-energy beaches, where large scale rip systems develop during 655 

storms and persist for several months (Loureiro et al., 2012), appears to be responsible for the 656 

variable spatial amplitudes of e1(s), as the topographically-controlled location of such rip systems is 657 

consistent with the areas of increased variability for e1(s).  658 

Effects of lateral boundaries have received far more attention in studies of morphological variation in 659 

embayed beaches, and an established base of literature exists now demonstrating the utility of EOF 660 

analysis in extracting the rotation component from morphological change datasets (e.g. Short et al., 661 

2000; Munõz-Pérez et al., 2001; Short and Trembanis, 2004; Miller and Dean, 2007a; Harley et al., 662 

2008; Ruiz de Alegría-Arzaburu et al., 2010). A characteristic rotation pattern for the second mode 663 

spatial eigenfunction, with a nodal point separating sectors of inverse morphological response, 664 

facilitates interpretation. In most cases, such lateral boundary effects are manifested in embayed 665 

beaches through the interruption of longshore sediment transport by a downdrift headland, as a result 666 

of seasonal or periodic shifts in wave climate (Short, 1999). When directional forcing can be 667 



 

 

associated with the spatial patterns of beach rotation, as in Salema and Boca do Rio, lateral 668 

boundaries unequivocally exert their effects by disrupting longshore sediment transport. However, 669 

lateral boundary effects can also be manifested through modification of nearshore circulation (Short, 670 

1999). Interpretation of nearshore circulation mechanisms, particularly topographically-controlled rip 671 

currents, is not as straightforward as directionally forced beach rotation due to irregular EOF spatial 672 

amplitude patterns (Clarke and Eliot, 1982). Nevertheless, correlation with forcing parameters 673 

sensitive to beach type and morphodynamic behaviour, notably Ω and δ’, does provide indications of 674 

the importance of laterally constrained nearshore circulation mechanisms in the three-dimensional 675 

behaviour of Cabanas Velhas, Mt. Clérigo and Amoreira embayments. 676 

In coastal embayments it is generally assumed that boundary effects will influence only the sections 677 

close to the headlands, leaving a central section relatively unaffected by the site boundaries (Short, 678 

1999; Miller and Dean, 2007a). While this is likely to be the case in wide embayments, the six study 679 

sites presented here are clearly small embayments and boundary effects are manifested along the 680 

entire beach.  681 

Our original hypothesis that vertical and lateral geological boundaries constrain the morphological 682 

behaviour of embayed beaches is abundantly supported by the results. Moreover, although it is not 683 

possible to state that the relative importance of two- and three dimensional changes directly relates to 684 

the variances explained respectively by the first and second mode eigenfunctions, a clear relation 685 

exists between these two variables, as postulated by Ruessink et al. (2000). Such distinction provides 686 

support to our secondary hypothesis that boundary effects can be decoupled from datasets of 687 

embayed beach morphological change.  688 

Finally, a framework for boundary effects in geologically constrained embayed beaches is proposed 689 

(Fig. 10), which considers a basic control on boundary effects by the sedimentary budget. Sediment 690 

abundant embayed beaches, with large accommodation spaces, are generally unaffected by vertical 691 

boundary effects. They are, however, prone to exhibit lateral boundary effects through constraining of 692 

nearshore 3D circulation and/or longshore sediment transport. The relative importance of these 693 

processes varies inversely in response to changes in embayment indentation and obliquity of wave 694 

approach. Within sediment-deprived embayments the controls on boundary effects are determined 695 

mainly by substrate depth and wave obliquity. Increases in both parameters enhance lateral boundary 696 

effects, frequently promoting beach rotation, while reductions impose constrains on the cross-shore 697 

sediment transport leading to reduced profile fluctuation. 698 

 699 



 

 

 700 

6. Conclusions 701 

This study shows that natural geological boundaries constrain the morphological behaviour of 702 

embayed beaches, determining diverse spatial and temporal variability patterns within the six 703 

embayments analysed. Localized responses produced by lateral and vertical boundary interference 704 

with nearshore dynamics, including beach rotation, topographic-controlled rip circulation and subdued 705 

profile fluctuation, are suggested as the primary drivers of alongshore non-uniform morphological 706 

variability. Examination of second mode eigenfunction is consistent with recent work suggesting that 707 

directionally forced beach rotation is the most frequent mode of alongshore variability in embayed 708 

beaches. Rotation patterns can, however, also emerge due to cellular circulation mechanisms or even 709 

as a result of complex interactions involving wave conditions, tidal prisms and fluvial discharge of 710 

shallow coastal streams.  711 

EOF decomposition confirms suggestions of a spatial decoupling in cross- and longshore responses. 712 

Variable peak correlation of temporal amplitudes and forcing parameters also indicates a decoupling 713 

in cross- and longshore response times, which appear to increase for more constrained embayments. 714 

Highly significant peak correlations of the normalized wave power with the first mode of morphological 715 

variability further suggests that, for exposed mesotidal coastal environments, a parameter combining 716 

wave and tide variability is likely to increase process-response relations between hydrodynamic 717 

forcing and morphological change. 718 

Lateral and vertical geological boundaries exert their effects fundamentally by restraining longshore 719 

sediment transport, inducing cellular surf zone circulation and by impacting cross-shore sediment 720 

transport. While sediment abundance is suggested as the fundamental element determining boundary 721 

effects, embayment indentation, wave obliquity and substrate depth are considered decisive to 722 

determine the morphological impact of vertical and lateral geological boundaries.  723 
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Table 1 

Summary of the relevant characteristics of the monitoring sites and correlation criteria 

Dataset 

Embayment dimensions Sediment data Beach profiles Correlation criteria 

Sl Cl Bl d50 Ws Spacing 
Surveys DOF Rcrit 95% Rcrit 99% 

(m) (m) (m) (mm) (m/s) (m) 

Amoreira 815 575 600 0.298 0.037 115 20 18 0.44 0.56 

Mt. Clérigo 955 785 580 0.309 0.039 140 20 18 0.44 0.56 

Arrifana 2055 1340 830 0.268 0.032 205 21 19 0.43 0.55 

Salema 1300 1235 560 0.304 0.038 195 33 31 0.34 0.44 

Boca do Rio 255 195 180 0.406 0.054 55 32 30 0.35 0.45 

Cabanas Velhas 835 715 650 0.281 0.034 170 32 30 0.35 0.45 

Abbreviations indicated in the text. Additionally, Bl stands for beach length.  



Table 2 
Percentage of the variance explained by the first two 
eigenfunctions at each site 

Dataset Percent of variance explained 

e1 (s,t) e2 (s,t) Remaining 
Amoreira 

86,43% 10,93% 2,64% 

Mt. Clérigo 91,41% 6,94% 1,65% 

Arrifana 93,96% 4,44% 1,60% 

Salema 66,66% 29,40% 3,94% 

Boca do Rio 87,45% 8,48% 4,07% 

Cabanas 

Velhas
92,10% 4,33% 3,57% 



Table 3 
Pearson’s product moment correlation coefficient’s between the temporal eigenfunctions (cn(t)) for the peak D days averages of the 
hydrodynamic forcing parameters preceding each survey (only correlations at the 95% or higher confidence levels are presented). 

Dataset Correlation with forcing parameters 

Hb θb Tp Ho/Lo Eo Po Pno Plb Ω δ'

Amoreira 
c1(t) -- -- -- -- -- -- -0.51 (1) -- -- -- 
c2(t) 0.65 (8) -- 0.68 (8) -- 0.62 (7) 0.65 (7) -- 0.48 (6) 0.52 (8) -0.58 (8)
Mt. Clérigo 
c1(t) -- -- -- -- -- -- -0.65 (1) -- -- -- 
c2(t) -0.49 (1) -- -- -- -- -- -- -- -0.51 (1) 0.59 (1) 
Arrifana 
c1(t) -0.52 (9) -- -0.49 (24) -- -0.54 (9) -0.54 (9) -0.88 (12) 0.49 (5) -0.51 (9) -- 
c2(t) -- -- -- -- -- -- -- -- -- -- 
Salema 
c1(t) -- -- -0.38 (15) -- -0.40 (20) -0.38 (11) -0.53 (10) -- -- -- 
c2(t) -- 0.41 (6) 0.63 (15) -0.41 (18) -- 0.36 (24) 0.37 (25) 0.35 (7) -- -0.43 (15)
Boca do Rio 
c1(t) -- -- -- -- -- -- -- -- -- -- 
c2(t) -- 0.55 (4) 0.44 (4) -0.38 (2) -- -- -- 0.55 (3) -0.35 (2) -- 
Cabanas 

Velhas
c1(t) -0.35 (30) -- -- -0.36 (14) -0.37 (29) -0.36 (30) -0.49 (4) -- -0.40 (19) 0.37 (17) 
c2(t) 0.37 (17) -- -- -- 0.36 (18) 0.37 (17) -- -- 0.37 (17) -- 
Values between parentheses indicate the averaged D days preceding each survey when the first peak in the correlation was observed. Highlighted values identify correlations 
exceeding the 99% confidence level. All symbols and abbreviations indicated in the text. 


