
wileyonlinelibrary.com/ETC © 2023 The Authors

Environmental Toxicology and Chemistry—Volume 42, Number 9—pp. 1915–1936, 2023
Received: 9 February 2023 | Revised: 1 April 2023 | Accepted: 4 April 2023 1915

Critical Perspectives

Chemical Mixtures andMultiple Stressors: Same but Different?

Ralf B. Schäfer,a,* Michelle Jackson,b Noel Juvigny‐Khenafou,a Stephen E. Osakpolor,a Leo Posthuma,c,d Anke Schneeweiss,a

Jürg Spaak,a and Rolf Vinebrookee

aInstitute for Environmental Sciences, Rheinland‐Pfälzische Technische Univerität Kaiserslautern‐Landau, Landau, Germany
bDepartment of Biology, University of Oxford, Oxford, UK
cCentre for Sustainability, Environment and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
dDepartment of Environmental Science, Radboud University, Nijmegen, The Netherlands
eDepartment of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada

Abstract: Ecosystems are strongly influenced by multiple anthropogenic stressors, including a wide range of chemicals and
their mixtures. Studies on the effects of multiple stressors have largely focussed on nonchemical stressors, whereas studies
on chemical mixtures have largely ignored other stressors. However, both research areas face similar challenges and require
similar tools and methods to predict the joint effects of chemicals or nonchemical stressors, and frameworks to integrate
multiple chemical and nonchemical stressors are missing. We provide an overview of the research paradigms, tools, and
methods commonly used in multiple stressor and chemical mixture research and discuss potential domains of cross‐
fertilization and joint challenges. First, we compare the general paradigms of ecotoxicology and (applied) ecology to explain
the historical divide. Subsequently, we compare methods and approaches for the identification of interactions, stressor
characterization, and designing experiments. We suggest that both multiple stressor and chemical mixture research are too
focused on interactions and would benefit from integration regarding null model selection. Stressor characterization is
typically more costly for chemical mixtures. While for chemical mixtures comprehensive classification systems at sub-
organismal level have been developed, recent classification systems for multiple stressors account for environmental context.
Both research areas suffer from rather simplified experimental designs that focus on only a limited number of stressors,
chemicals, and treatments. We discuss concepts that can guide more realistic designs capturing spatiotemporal stressor
dynamics. We suggest that process‐based and data‐driven models are particularly promising to tackle the challenge of
prediction of effects of chemical mixtures and nonchemical stressors on (meta‐)communities and (meta‐)food webs.
We propose a framework to integrate the assessment of effects for multiple stressors and chemical mixtures. Environ Toxicol
Chem 2023;42:1915–1936. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals
LLC on behalf of SETAC.
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INTRODUCTION
Globally, ecosystems are influenced by humans at an un-

precedented scale and magnitude (Steffen et al., 2015; Waters
et al., 2016). The pervasive footprint of human activities has
resulted in substantial losses of biodiversity and is affecting the
functioning of ecosystems, making them potentially less

hospitable for life (Barnosky et al., 2012; Steffen et al.,
2018; 2018). Major anthropogenic stressors of biodiversity
are habitat degradation through land/sea use change, over-
exploitation, climate change, and pollution with chemicals
(Díaz et al., 2019). These stressors frequently co‐occur spatially
and temporally. Almost the entire ocean (97.7%) was subject to
multiple stressors in a global analysis of 19 stressors (Halpern
et al., 2015). Similarly, an analysis of German river monitoring
data and four stressors found that in more than 95% of sam-
pling sites two or more stressors occurred above thresholds for
ecological risks (Schäfer et al., 2016). In a study on diatom,
invertebrate, and fish communities in 434 US streams and on
five stressors, 68% of streams had two or more stressors at
levels suggesting adverse effects (Waite et al., 2021). Thus,
multiple stressors are the new norm in ecosystems.
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Predicting the responses of organisms, populations, com-
munities, and food webs to multiple stressors represents a
major challenge (Figure 1), partly due to potential interactions
between stressors that are widely occurring in ecosystems
(Cote et al., 2016). An analysis of mesocosm experiments and
of European monitoring data of lakes and rivers for 174 paired
stressor combinations identified interactions in 33% of cases
(Birk et al., 2020). Another study found that stressor interactions
explained more than half of the variance in ecological status in
over 50,000 European river subcatchments (Lemm et al., 2021).
Experimental studies with aquatic and soil microcosms and with
plant communities found that stressor interactions were more
frequent when the number of stressors increased (Rillig
et al., 2019; Speißer et al., 2022; Suleiman et al., 2022). Note
that stressor interactions can also be a consequence of the
statistical model used when diagnosing interactions and may
not have a mechanistic basis (see General mechanisms and
identification of interactions with null models section for
details), although this still complicates prediction.

In real‐world ecosystems, chemicals typically occur simulta-
neously as mixtures. For example, a screening of 2316 chem-
icals in Greek wastewater samples detected 398 chemicals

(Gago‐Ferrero et al., 2020). Of 970 target compounds, that is,
chemicals selected for chemical analysis, 426 chemicals with
approximately 30 different modes of action toward organisms
were found in three Central European rivers (Busch
et al., 2017). Studies in agricultural areas of Central and Eastern
Europe found up to 50 pesticides, a group of chemicals de-
signed to adversely affect organisms, in a single water sample
from streams (Halbach et al., 2021; Moschet et al., 2014;
Schreiner et al., 2021). Of 82 target compounds, 76 were
detected in soils in regions with different land uses around
Paris, France (Gaspéri et al., 2018).

A reliable prediction of chemical effects often requires
consideration of the full mixture. Several studies reviewed by
Posthuma et al. (2019) demonstrated associations between
chemical mixtures and ecological responses. Bioassays with
water samples from streams and rivers suggest that although
many chemicals occur at low concentrations, they need to
be considered to explain the response of the bioassays (e.g.,
Escher et al., 2020; Neale et al., 2020). Indeed, multiple
chemicals with a similar mode of action, each occurring at low
concentrations that would cause no or only negligible effects,
may together exert a strong effect, which is called the

FIGURE 1: Overview of the tools and methods of multiple stressor and chemical mixture research with joint challenges and research gaps. Idealized
representation. Blue text highlights the tools and methods that are of particular interest for the other research areas.
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“something from nothing” effect (Silva et al., 2002; Thrupp
et al., 2018; Figure 2A). A large number of experimental studies
in the laboratory, mostly with only two or three chemicals and
single species, has found interactions between chemicals that
likely have a mechanistic basis (Rodea‐Palomares et al., 2015).
A recent meta‐analysis of mixture experiments including var-
ious chemical classes found on average 35% of interactions
(Martin et al., 2021). Mixtures containing pesticides and bio-
cides that frequently occur in ecosystems (Liess et al., 2021;
Riedo et al., 2021; Wolfram et al., 2021), were particularly
prone to exert interactions. In contrast to these experimental
systems, several studies on pesticides in agricultural streams
found that the highest estimated toxicity for a single pesticide
in a sample, in other words ignoring mixture toxicity com-
pletely, was sufficient to explain the ecological response
(Liess et al., 2021; Schäfer et al., 2013). Thus, experiments
may strongly overestimate the relevance of interactions for
real‐world ecosystems.

Although multiple stressors are ubiquitous and often include
chemical mixtures, biotic responses to them have largely been
studied separately (but see, e.g., Burton & Johnston, 2010).
This is despite the fact that chemical and nonchemical stressors
act jointly, sometimes through mechanistic interactions, on
organisms (Holmstrup et al., 2010; Laskowski et al., 2010; Liess

et al., 2016). The lack of an integrative approach to studying
both chemical and other stressors reflects the disciplinary di-
visions that exist between scientific communities in which
(applied) ecologists and ecotoxicologists use distinct research
topics, paradigms, journals, and conferences (Bernhardt et al.,
2017; Hodgson, Halpern & Essington, 2019; Orr et al., 2020;
Schäfer et al., 2016). Notwithstanding, to predict the responses
of biological systems to multiple stressors and multiple chem-
icals as well as combinations of both requires an overarching
framework that integrates and thereby benefits the associated
research communities (Pirotta et al., 2022). Below we describe
and discuss the approaches for multiple stressor and chemical
mixture research and provide an outlook on potential synthesis
in different domains (Figure 1).

THE GENERAL APPROACH
OF ECOTOXICOLOGY AND
(APPLIED) ECOLOGY

Ecotoxicology is a relatively young discipline, which has
partly inherited its methodological focus from (mammalian)
toxicology, at least for research with an applied scope
(Newman & Clements, 2008). Mammalian toxicology has a

(A)

(B)

FIGURE 2: Illustration of several concepts related to stressor intensity–response relationships. (A) Concept of equipotency and the phenomenon of
“Something from nothing” for five chemicals A to E. At the equipotent concentration level (CEP), each compound causes the same effect in isolation.
In the absence of interactions and assuming the same mode of action, compounds at equipotent concentrations in a mixture are perfectly
exchangeable. This is illustrated by five compounds in a mixture at CEP equalling five times the single compound A. (B) Predicted effect when
assuming linearity and effect observed when the stressor intensity–response relationship is nonlinear. In this case, doubling the level of an individual
stressor would be perceived as synergism when using a simple addition model.
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strong focus on extrapolating chemical effects from a few se-
lected species (e.g., rat, mouse) to humans (Abou‐Donia, 2015),
whereas a major part of ecotoxicological research aims to
quantify the responses of a few selected species to (typically
single) chemicals under controlled laboratory conditions, as a
basis to evaluate the potential implications of chemicals in
ecosystems (Cairns, 1986; Schäfer, 2014). Standardized ex-
perimental test systems with single, laboratory‐adapted spe-
cies and chemicals still form the backbone of current chemical
regulatory risk assessment (Dale et al., 2008). Key applications
of risk assessment include prospective chemical safety assess-
ment (e.g., Registration, Evaluation, Authorisation and Re-
striction of Chemicals [European Commission (EC), 2006]),
retrospective environmental quality assessment (e.g., European
Water Framework Directive [EC, 2000]) and life cycle impact
assessments. A literature analysis found that 53% of all studies
on pesticide effects in freshwater ecosystems focussed on a
single organism, the water flea Daphnia magna, which is a
surrogate test species used to assess toxicity toward in-
vertebrates (Beketov & Liess, 2012). Field studies on com-
munities in real ecosystems constituted less than 1% of all
studies. In situ bioassays, where organisms are deployed in
ecosystems to assess the potential effects of chemicals, are
more frequently conducted but typically also rely on individuals
of a single species (Burton & Nordstrom, 2004; Sarkis
et al., 2023). However, extrapolating results from single species
experiments to ecosystems, for instance in the case of fresh-
water ecosystems with more than 100 000 known invertebrate
species (Balian et al., 2008), remains a major challenge and was
rated among the most important current research challenges in
ecotoxicology (Van den Brink et al., 2018). Besides the in-
heritance of methods from toxicology, the ecotoxicological
research's focus on single species and often single chemicals
under controlled laboratory conditions is driven by its strong
connection to regulatory chemical risk assessment. The regu-
latory frameworks differ between chemical groups (e.g., pesti-
cides, biocides, nanoparticles), but generally rely on single
species as representatives for whole organism groups and
trophic levels, and simplified experimental designs that ignore
additional stressors (van Dijk et al., 2021). This regulatory
footprint is also visible in the strong focus of ecotoxicological
modeling on individuals and populations (Larras et al., 2022).

Compared with a large part of ecotoxicological research,
ecological studies more frequently use field experiments and
surveys in ecosystems to establish links between stressors and
ecological responses, although laboratory studies are also
widely used in multiple stressor research. However, these
studies have largely ignored chemicals as stressors except for
nutrients (Bernhardt et al., 2017; Groh et al., 2022; Schäfer
et al., 2016; Schneeweiss et al., 2023; Sigmund et al., 2023).
For example, analyses of general and specific (e.g., freshwater)
ecological journals found a comparatively low amount of
studies on toxic chemicals, and related United States national
project funding was negligible (Bernhardt et al., 2017; Persson
et al., 2022; Schäfer et al., 2016). This is presumably owed to
disciplinary division, that is, that toxic chemicals are regarded
as the subject matter of a different discipline (Orr et al., 2020)

and to the complexity of characterizing mixture exposures and
related ecological effects, which requires sophisticated and
costly methods of sampling and analyzing chemicals (see
below; Sigmund et al., 2023). Moreover, the sheer amount and
potential interactions between chemicals have for long com-
plicated the identification of causal relationships and the im-
plementation of eco‐epidemiological approaches aligning
applied ecology with ecotoxicology (Bro‐Rasmussen & Løkke,
1984; Posthuma et al., 2020).

Overall, the above described research paradigms can his-
torically explain the gap between multiple stressor research
and chemical mixture research (Figure 1). A contemporary
analysis of the state of progress in the respective disciplines
follows and highlights domains with potential for synergy.

GENERAL MECHANISMS AND
IDENTIFICATION OF INTERACTIONS
WITH NULL MODELS

From a mechanistic perspective, stressors can interact two‐
fold. First, a stressor can moderate the intensity of other
stressors, hereafter called intensity interaction. For example,
increased turbidity through sand input in experimental streams
decreased the predation of invertebrates (Louhi et al., 2017).
Second, the effect of a stressor on an organism, population,
community, or food web may influence the effect of a different
stressor, hereafter called effect interaction. For example, pre-
dation by fish modified the response of a zooplankton com-
munity to warming in a mesocosm experiment (MacLennan &
Vinebrooke, 2021). In this context, chemical mixtures represent
a special case of multiple stressors to which the same two types
of interaction, that is, intensity and effect interaction, apply. A
chemical can modify the concentration of a second chemical,
for example nanoparticles modify pesticide concentrations
(Seitz et al., 2012), and one chemical may influence the re-
sponse of organisms to a second chemical, for example
azole fungicides can reduce the biotransformation in in-
vertebrates and thereby increase their sensitivity to pyrethroids
(Cedergreen et al., 2017). Other factors such as the ecological
context, for example the organisms involved and biological
level, are relevant for prediction of stressor effects (Thompson
et al., 2018).

In both multiple stressor and chemical mixture research,
many studies have focussed on identifying cases of effect in-
teractions. These manifest themselves as deviations of the
observed joint effects from the predicted joint effects, where
the prediction is calculated with a null model using the in-
dividual effects of the stressors. If the observed joint effect is
larger and smaller than predicted, this is called synergism and
antagonism, respectively (as compared with the null model).
Synergism and antagonism occur widely and hamper pre-
diction for both multiple nonchemical stressors (Darling &
Cote, 2008; Dieleman et al., 2012) and multiple chemicals
(Cedergreen, 2014; Martin et al., 2021), but also combinations
of chemical and nonchemical stressors (Holmstrup et al., 2010;
Laskowski et al., 2010; Liess et al., 2016). However, while
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mechanistic effect interactions manifest as synergism or an-
tagonism, the diagnosis of synergism and antagonism does
not necessarily indicate an underlying mechanistic effect
interaction (Figure 1).

What constitutes synergism and antagonism depends on a
null model that is used to predict the joint effect from the
individual stressors (Dey & Koops, 2021; Piggott et al., 2015).
Different null models are typically used in multiple stressor and
chemical mixture research. In multiple stressor research, the
majority of studies used a linear statistical model in data
analysis such as analysis of variance. This implies using a
simple addition model or, sometimes unknowingly, when log‐
transformed data are used (Griffen et al., 2016), a multiplicative
null model (for details on models see Schäfer & Piggott, 2018).
At the biological level of communities and food webs, the co‐
tolerance concept can assist in the selection of an appropriate
null model (Vinebrooke et al., 2004). The concept provides
hypotheses on the community outcome of multiple stressors
based on the correlation of species tolerances to the individual
stressors. For example, if all species in a community exhibit a
negative co‐tolerance, that is, tolerances to different stressors
are negatively correlated, each stressor would affect different
fractions of the community. The simple addition null model
may then be most appropriate to predict the joint effect. By
contrast, in the absence of co‐tolerance, that is, tolerances
exhibit no correlation, the multiplicative null model may
provide the most appropriate prediction.

The multiplicative model is also frequently used in ecotox-
icology, but under the name of independent action (Bliss, 1939),
effect addition, or response addition. It has been developed
with a focus on chemicals that act biochemically dissimilarly in an
organism, whereas the model of concentration addition has
been developed for chemicals that act biochemically similarly in
an organism (Loewe & Muischnek, 1926). The predictions of
concentration addition and independent action converge in the
case of mixtures with many chemicals at low effect levels, for
example up to 10% of the total possible effect, where the effect
is typically mortality (Escher et al., 2020). Given the frequent
similarity in prediction accuracy and that data is often lacking to
fit an independent action model (see below for details), the
concentration addition model has been suggested as the
standard tool for chemical risk assessment in different regions
such as the European Union (Frische et al., 2014), the United
States (Belden & Brain, 2018), and China (Chen et al., 2020).
Comparative discussions on null model selection are largely
lacking in ecosystem management focusing on multiple stres-
sors. Another model that is often used rather implicitly is the
dominance null model. This model predicts that the joint effect
equals that of the stressor or chemical with the highest individual
effect, hence it ignores all other stressors and chemicals. Inter-
estingly, a recent analysis found that for the combined effect of
climate change and a second stressor in freshwater ecosystems,
the dominance model best explained the observed effect
(Morris et al., 2022), in particular when stressor intensities dif-
fered strongly. In addition, several studies on pesticides in ag-
ricultural streams found that the dominance model yielded
similarly strong associations with ecological community metrics

as the concentration addition for all detected pesticides (Liess
et al., 2021; Schäfer et al., 2013). This was largely due to a strong
difference in the toxic potency of the most toxic chemical
compared with all other chemicals (cf. Price & Han, 2011). By
contrast, a meta‐analysis of studies with mortality as response
found that the dominance model exhibited the highest bias (Dey
& Koops, 2021), although no model performed best in both
accuracy and precision. Overall, it remains largely open which
null model yields the most accurate and precise prediction for a
given multiple stressor scenario, while for chemical mixtures
concentration addition represents a widely accepted standard
model.

In contrast to multiple stressor research, for chemical mix-
tures a formalized method has been widely adopted to eval-
uate which size of departure between data and null model
prediction constitutes synergism or antagonism, the so‐called
model deviation ratio (MDR; Belden et al., 2007). The MDR is
obtained by dividing the null model prediction by the observed
joint effect, where >1 is synergism and <1 is antagonism.
Several meta‐analyses and reviews employed MDR boundaries
of 0.5 and 2 as matching with the null model (Belden
et al., 2007; Cedergreen, 2014; Martin et al., 2021). However,
narrower boundaries (0.83 to 1.25), translating into more cases
of apparent synergism and antagonism, have also been used
(Carnesecchi et al., 2019). The MDR approach has been criti-
cized for only relying on the effect size and ignoring the de-
pendence of the MDR on the sample size (Macacu &
Guillot, 2020). In response, a statistical significance test in-
corporating the sample size has been suggested (Macacu &
Guillot, 2020), where synergism and antagonism are a function
of effect size and sample size. Conversely, many studies have
criticized statistical significance testing because statistical sig-
nificance is not necessarily biological significance (Cohen,
1994; Pernet, 2017; Schober et al., 2018) and a statistical in-
teraction does not imply mechanistic interaction of stressors or
chemicals. For large sample sizes, even minor deviations from a
null model are statistically significant. By contrast, small sample
sizes in factorial designs, which often apply to multiple stressor
studies, lack the power to detect interactions, in particular when
the observational error is relevant (Burgess et al., 2021, 2022).
However, multiple stressor research largely relies on statistical
significance testing to identify synergism and antagonism. An
alternative to purely effect‐size driven MDR boundaries and sig-
nificance testing for both multiple stressor and chemical mixture
research could be MDR boundaries based on standardized effect
sizes such as Cohen's d or Hedge's g, which are frequently used
in meta‐analyses (Jackson, 2015).

While joint effects of multiple stressors are typically only
predicted within the context of a specific study where in-
dividual and joint effects have been measured (Hodgson &
Halpern, 2019), the joint effects of chemical mixtures are often
predicted for exposure concentrations, for instance determined
in field studies, in the absence of measured effects, using effect
data from single species laboratory tests and a null model,
typically concentration addition. The concentration addition
model requires effect data for a defined effect level to
benchmark and aggregate the toxic potency of different
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chemicals. In most cases the median effect concentration
(EC50), defined as the effect concentration where half of the
test population exhibits a specific effect, is used because it is
available from public databases and, in case of missing data,
tools such as quantitative structure–activity relationship models
allow for reliable prediction (Astuto et al., 2022). Quantitative
structure–activity relationships predict properties such as the
EC50 for an organism for nontested chemicals based on
mathematical relationships between the chemical structure and
respective properties, established using experimental data.
To use independent action as null model, in contrast, would
typically require the full dose–response relationship to derive
an effect for a given exposure concentration of a chemical.
However, full dose–response relationships are comparatively
scarce compared with EC50 data. Hence, the concentration
addition model is commonly applied to evaluate the joint
effects of a chemical mixture found in ecosystems (e.g.,
Ginebreda et al., 2014; Liess et al., 2021; Markert et al., 2020;
Rorije et al., 2022; Schäfer et al., 2013). Although mixture
predictions rather provide a crude proxy of risks to populations
or communities (see Process‐based models for predicting
ecosystem effects of multiple stressors and chemical mixtures
section), they can be useful to evaluate the relevance of a
chemical mixture, for example through comparison with risk
thresholds (Schäfer et al., 2016). Multiple stressor research
would clearly benefit from the ecotoxicological approach to
provide standardized effects data. Besides data compilation,
which has been done, for instance, for temperature tolerance
(e.g., Pottier et al., 2022), this would also require a move
toward regression designs in multiple stressor studies that
allow for establishing stressor intensity–response relationships
(see Experimental design in chemical mixture and multiple
stressor research section).

The general approach of screening for synergism and an-
tagonism has been heavily criticized in multiple stressor re-
search (De Laender, 2018; Griffen et al., 2016; Pirotta
et al., 2022; Schäfer & Piggott, 2018; Segner et al., 2014;
Simmons et al., 2021). The main criticism is that the classi-
fication of effects does not provide mechanistic understanding
and that rather mechanistic models should be developed (as
discussed in Process‐based models for predicting ecosystem
effects of multiple stressors and chemical mixtures section).
Many studies have shown that the outcome of the classification
depends on the study context including (1) the study design, in
particular the chosen stressor intensities in factorial designs,
(2) the level of biological organization, where, for example,
additive effects on the population level become nonadditive
through species interactions in a community (Thompson
et al., 2018), and (3) the time point of classification because
effect sizes and directions can change in dynamic systems (Baas
et al., 2007; Brooks & Crowe, 2019; e.g., Streib et al., 2022).
Thus, a nonadditive classification does not imply a mechanistic
effect interaction. In response, recent developments include a
null model for the community‐level based on the simple addi-
tive model (Thompson et al., 2018) and concentration addition
and independent action (De Zwart & Posthuma, 2005), a more
widely applicable version of independent action for multiple

stressors (Tekin et al., 2020), and new null model approaches
with a stronger mechanistic basis such as the stressor addition
model (Liess et al., 2016). Using the more widely applicable
version of independent action strongly reduced the frequency
of synergism compared with a simple additive null model and
yielded predominantly additive and antagonistic interactions
(Tekin et al., 2020). The stressor addition model provided
better predictions than concentration addition and in-
dependent action models for studies combining a chemical
and a nonchemical stressor, and was least biased in multiple
stressor studies with mortality as response (Dey & Koops, 2021;
Liess et al., 2016). Interestingly, the criticism on the classi-
fication of effects is much weaker in chemical mixture research
than in multiple stressor research. This is likely because the vast
majority of studies in chemical mixture research focuses on
single species tests and bioassays (Cedergreen, 2014; Martin
et al., 2021), where strong departures from the null model
(typically concentration addition) are relatively likely to indicate
mechanistic effect interactions of the involved chemicals.
Overall, a stronger exchange on null models between multiple
stressors and chemical mixture research might benefit both
research areas.

CHARACTERIZING STRESSORS AND THEIR
MODES OF ACTION

Both multiple stressor research and chemical mixture re-
search require a reliable quantification of stressors. Stressors
can be separated into physical (e.g., warming, soil compaction,
water flow velocity, fire, land use change), chemical (e.g., water
reduction, nutrients, salinity, metals, pesticides), and biological
(e.g., invasive species, disease) categories (Rillig et al., 2021),
although overlaps exist (e.g., between chemical and physical
stressors: microplastics, nanoparticles, and soot particles).
Compared with the quantification of most physical and bio-
logical stressors and several chemical stressors such as nu-
trients, salinity, or water level, the labor and financial costs to
comprehensively quantify toxicants are much higher (Sigmund
et al., 2023). While costly measurement devices and sensors
are by no means specific to chemical stressors (e.g., spec-
trophotometer for nanoparticles, weather stations, sensors for
humidity or radiation), the sheer amount of potential chemicals
and the fact that many of these are toxic in the smallest traces
makes their quantification very costly because complex sample
processing steps are often required (e.g., extraction from or-
ganisms or soils). Note that despite these efforts current mix-
ture characterizations are rather incomplete, that is, they miss
ecotoxicologically relevant chemicals (Escher et al., 2020).
Moreover, compared with several stressors such as land use
change and soil compaction that are press disturbances, sev-
eral chemicals occur in pulses and thereby require a high
temporal resolution of sampling (Rillig et al., 2021). For ex-
ample, ecologically relevant pesticide concentrations in
streams can exhibit a high variability over short time scales
(e.g., hours and a few days; Leu et al., 2004; Stehle et al., 2013)
and related automated sampling devices require strong
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technical expertise and are costly (Halbach et al., 2021;
Moschet et al., 2014; Stravs et al., 2021). Overall, a major dif-
ference between multiple stressor research and chemical mix-
ture research is that a comprehensive quantification of mixtures
requires more labor and financial resources than most
other global change stressors considered in multiple stressor
research.

The classification of stressors including chemicals may
support prediction of their effects. Chemical classification
systems mainly rely on the so‐called mode of action, although
its definition and classification approaches differ in their
focus. The focus can be on physiological effects, target site,
or chemical structure and the level of complexity may vary
strongly (Escher, 2013; Kienzler et al., 2017, 2019). While
early classifications suggested four classes (inert, less inert,
reactive, specifically acting; Verhaar et al., 1992), six broad
and 31 specific modes of action have been suggested more
recently (Martin et al., 2013). Modes of action are particularly
relevant in the context of chemical mixtures because similarly
and dissimilarly acting chemicals are assumed to be pre-
dictable by the concentration addition and independent ac-
tion models, respectively. Physiological modes of action that
focus on the energy processing in organisms (e.g., assim-
ilation, maintenance, growth, or reproduction of an organism)
may be useful to bridge the gap to multiple stressor research
(Ashauer & Jager, 2018). Bioenergetic models could use
these physiological modes of action to predict the joint effect
of chemicals, nonchemical stressors, or combinations of both
(Ashauer & Jager, 2018). By contrast, comprehensive classi-
fication schemes for nonchemical stressors in the context of
multiple stressor research have emerged only recently, al-
though their importance has long been recognized (Breitburg
et al., 1998). Two very broad schemes discriminating three or
four modes of action of stressors have been introduced (Galic
et al., 2018; Schäfer & Piggott, 2018). Recently, Rillig et al.
(2021) suggested a classification system with multiple cate-
gories including effect mechanisms, effect directions for dif-
ferent organism groups, and nature of the stressor (e.g.,
stressor is physical and is a particle, stressor is chemical and
organic). A recent classification expands the stressor classi-
fication to the environmental context and also considers the
sources of stressors, temporal and spatial profiles, and tol-
erances of major organism groups (Orr et al., 2022). This
concept can feed into a more comprehensive risk assessment
of multiple stressors that in addition to evaluating their mode
of action classifies the environmental occurrence and organ-
isms at risk. Finally, so‐called threat webs have been sug-
gested as a tool to identify the causal co‐occurrence of
stressors (Geary et al., 2019). An earlier study suggested the
classification of stressors by frequency of occurrence in an
ecosystem based on habitat types within an ecosystem
(Burton & Johnston, 2010). Overall, ecotoxicological research
has provided a comprehensive classification system for the
mode of action of chemicals, which may inform further de-
velopment in multiple stressor research. Conversely, chem-
ical mixture research could benefit from multiple stressor
research on how to consider environmental context when

identifying potential realistic mixtures and organism groups
at risk (for a case study see Bracewell et al., 2019).

EXPERIMENTAL DESIGN IN CHEMICAL
MIXTURE AND MULTIPLE STRESSOR
RESEARCH
Number of stressors and chemicals

A vast number of experiments has been conducted to study
the effects of multiple stressors (see meta‐analyses by Ban
et al., 2014; Crain et al., 2008; Heugens et al., 2001; Jackson
et al., 2016; Matthaei & Lange, 2016) and chemical mixtures
(see meta‐analyses by Belden et al., 2007; Cedergreen, 2014;
Martin et al., 2021). Both research areas have been biased in
their experimental designs toward strongly simplified scenarios
(Hodgson & Halpern, 2019). For chemicals, the majority of
mixture experiments has been performed with small mixtures
under simplified conditions that deviate strongly from those
found in real‐world ecosystems (Martin et al., 2021). Specifi-
cally, they have been mainly conducted with (1) binary and
ternary mixtures, (2) at equipotent concentrations, and (3) in the
laboratory under controlled conditions using single species of
plants or invertebrates and mammalian bioassays. Although a
relevant fraction (e.g., 12%–36% depending on the group of
chemicals in Cedergreen, 2014; 35% in Martin et al., 2021) of
cases in the experiments exhibited synergism or antagonism,
owing to the simplified experimental conditions this fraction
may be overestimated compared with real‐world ecosystems.
However, this would not impinge on the general relevance of
additive mixture effects (Posthuma et al., 2019). First, with
typically hundreds of chemicals, the size of real mixtures is
considerably larger than those considered in most experiments
(Busch et al., 2017; Gago‐Ferrero et al., 2020; Halbach
et al., 2021; Massei et al., 2018; Schreiner et al., 2021). For a
given effect level, departures from the concentration addition
prediction generally decrease with an increase in the number of
chemicals (Rodea‐Palomares et al., 2015; Warne &
Hawker, 1995), although as long as the number of chemicals
remains relatively small (~10 or less), effect interactions may
also increase (Chen et al., 2015; Rodea‐Palomares et al., 2010;
Tian et al., 2012). Second, most experiments used equipotent
concentrations of chemical mixtures, that is, all chemicals
constituting a mixture are present at concentrations that would,
if the chemical occurred alone, trigger the same effect
(Figure 2A). Deviations from null models for chemical mixtures
typically peak at equipotency following the climax hypothesis
(Lin et al., 2005; Tian et al., 2012). However, environmental
mixtures depart strongly from equipotency (Geissen
et al., 2021; Schäfer et al., 2013; Vallotton & Price, 2016;
Weisner et al., 2021). For example, of 34 354 river water sam-
ples, only approximately 10% of chemicals contributed 90% of
the predicted additive effect (Rorije et al., 2022). Finally, effect
interactions are strongly species‐dependent and may change
with the effect level. For example, a ternary mixture of lipid
regulators exhibited an antagonistic and synergistic interaction
at low and high effect levels, respectively, in the bacterium

Mixtures and stressors—Environmental Toxicology and Chemistry, 2023;42:1915–1936 1921

wileyonlinelibrary.com/ETC © 2023 The Authors

D
ow

nloaded from
 https://academ

ic.oup.com
/etc/article/42/9/1915/7729690 by N

H
S Scotland Stirling U

niversity Placem
ent Students user on 18 February 2025



Vibrio fischeri (Phylum: Pseudomonadota), whereas the oppo-
site pattern was found in a cyanobacterium (Anabeana spp.;
Baek et al., 2019).

Studies on multiple stressors exhibit similar shortcomings.
Most studies have only considered two stressors, whereas in real‐
world ecosystems frequently a much higher number of stressors
co‐occur (Griffen et al., 2016; van Moorsel et al., 2023; Rillig
et al., 2019; Suleiman et al., 2022). Recent studies with soil and
aquatic microcosms demonstrated that increasing the number of
stressors increases changes in the effect direction, thereby re-
ducing the capacity for prediction (Rillig et al., 2019). However,
an increase in the number of stressors was typically associated
with an increase in the overall effect level. Here, multiple stressor
research may benefit from the concept of equipotency in
chemical mixture research. Although equipotency may be non-
representative for real‐world conditions, when increasing the
number of stressors care should be taken to keep the effect level
constant (Figure 2A), otherwise an increase in the effect size may
simply result from a higher stressor intensity and would also be
expected if the intensity of a single stressor increased. Fur-
thermore, in the case of nonlinear stressor intensity–response
relationships that are common, even an increase in a single
stressor would yield to nonadditive responses when analyzing
the data with a linear statistical model (Hunsicker et al., 2016;
Pirotta et al., 2022). A modeling study demonstrated for different
levels of biological organization that synergism and antagonism
can simply result from nonlinear stressor intensity–response re-
lationships without any underlying mechanistic interactions
(Turschwell et al., 2022). Another major issue that is much more
pronounced in multiple stressor than chemical mixture research is
the restricted number of treatments levels, frequently just two or
three, per stressor (Griffen et al., 2016). For example, less than
15% of studies in two meta‐analyses of multiple stressor studies
used five or more treatment levels of a factor, which are a min-
imum requirement to estimate stressor intensity–response rela-
tionships (Griffen et al., 2016; Matthaei & Lange, 2016). Thus,
differences between studies in the classification of interaction
types and effect directions for the same stressors may partly be
the result of study designs with too few treatment levels, which
also excludes the selection of some null models. Furthermore,
this leads to between‐study variance, translating into weak pre-
dictive power (Pirotta et al., 2022). Finally, many studies also lack
realism by using simplified spatial and temporal stressor profiles,
which is discussed next.

The temporal and spatial dimension of stressors
and their effects

In multiple stressor and chemical mixture experiments,
typically two stressors are applied simultaneously. Under more
realistic real‐world scenarios with desynchronized and dynamic
stressors, the complexity of predicting effects is likely to increase
(Fraker et al., 2022; Jackson et al., 2021). Stressors operate over
different time scales, and long‐term stressors that have been
affecting ecosystems for decades, such as excessive nutrient
input, may interact with pulsed stressors such as heatwaves.

Pulsed stressors commonly occur at different magnitudes of
stressor intensity and vary in their duration. Chemicals also
exhibit pronounced temporal patterns. Given a continuous
release, some chemicals exhibit relatively constant exposure
(e.g., pharmaceuticals; Hernando et al., 2006), whereas others
increase (e.g., novel chemicals), decrease (e.g., phased out
chemicals), or show pronounced short‐term or seasonal (e.g.,
pesticides; Halbach et al., 2021) trends. Comparatively few
studies have manipulated temporal profiles of stressors, but
these studies demonstrated that, among others, stressor dura-
tion, variability, timing, and time lag between pulsed stressors
influence the overall impact (Bertocci et al., 2005; Bulleri
et al., 2014; Fukami, 2001; Molinos & Donohue, 2010; Ostrowski
et al., 2022; Verheyen & Stoks, 2019). Even long after a chemical
or nonchemical stressor has disappeared, it may still influence
the trajectory of ecological systems, which is called legacy or
carry‐over effect, and thereby determine how they respond to
current and emerging stressors (Harding et al., 1998; Landis
et al., 1996; Ryo et al., 2019).

The prediction of the effects of dynamic ocusisors is further
complicated by the fact that the stressor order (e.g., order of
chemical exposures) can determine the effects. For instance,
if a species is negatively and positively affected by stressors
A and B, respectively, first exposure to A would lead to stronger
suppression than first exposure to B. Indeed, several studies on
chemical and nonchemical stressors demonstrated that the
stressor order can matter (Ashauer et al., 2017; Brooks &
Crowe, 2019; Fukami, 2001; Rillig et al., 2015). The co‐tolerance
concept helps in assessing when stressor order matters (Flöder &
Hillebrand, 2012; MacLennan & Vinebrooke, 2021). A negative
and positive correlation of tolerance to stressors has been hy-
pothesized to increase and decrease the relevance of stressor
order, respectively (MacLennan & Vinebrooke, 2021). This con-
cept easily translates to chemicals andmay be useful for chemical
mixture research. Conversely, toxicokinetic–toxicodynamic
(TKTD) models are widely used in ecotoxicology and provide a
mechanistic understanding of toxicity in organisms over time
(Ashauer & Escher, 2010). They have successfully predicted the
effects of different exposure profiles of chemicals on organisms
(Ashauer et al., 2016; Bart et al., 2021), although mainly for single
species. Toxicokinetic‐toxicodynamic models and related bio-
energetic models (details in next section) could be adapted for
other stressors and then be useful for multiple stressor research
(Goussen et al., 2020). Finally, a recent study introduced the
concept of stressor action curves, based on the stressor addition
null model, that successfully predicted synergistic effects for
different sequential treatments of a chemical and nonchemical
stressor on a single species (Schunck & Liess, 2022).

Most experimental studies are of short duration and thereby
ignore the adaptive potential of stressed organisms (Boyd
et al., 2018; but see Orr et al., 2021). While adaptation to
stressors including chemicals has been found in many studies
(Becker & Liess, 2017; Jeremias et al., 2018; Lasky, 2019),
adaptation typically involves a trade‐off that may compromise
population viability (Siddique et al., 2020; Tikhonov
et al., 2020). Meta‐analyses of experimental studies with up to
1‐year duration in different systems found contradictory results
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of the influence of experimental duration on the effects of
multiple stressors (Darling & Cote, 2008; Lange et al., 2018).
However, on longer time scales such as years, the effects of
stressors dampened (Leuzinger et al., 2011). This may be due
to adaptation, but also recolonization from other patches,
which highlights the importance of the spatial dimension.

Similar to the temporal dimension, the spatial dimension of
multiple stressors and chemical mixture effects has received
little attention. Most studies have been conducted using spa-
tially restrictive microcosms and mesocosms, thereby ignoring
species dispersal (Nyström & Folke, 2001; Ryser et al., 2021;
Schiesari et al., 2018; Streib et al., 2022). However, dispersal
can be important because it may sustain populations in patches
affected by stressors and thereby reduce the extinction risk, a
phenomenon described in the source‐sink concept and called
the rescue effect (Furrer & Pasinelli, 2016; Gotelli, 1991;
Pulliam, 1988). However, dispersal dynamics can also threaten
the persistence of metapopulations. In case of too high dis-
persal mortality or stressor‐driven population decline in too
many patches in a landscape, this may deplete populations in
connected source patches and eventually lead to meta‐
population collapse (Amarasekare, 2004; Harvey et al., 2018;
Spromberg & Scholz, 2011; Willson & Hopkins, 2013). Besides
stressor effects, dispersal can also propagate the stressor itself.
This is, for instance, important for chemicals that can enter food
chains via bioaccumulation in dispersing organisms and con-
sequently influence distant ecosystems (Schiesari et al., 2018).
Several studies have shown that this mechanism also acts
across ecosystems as cross‐ecosystem biomagnification
through the transport of chemicals via dispersing organisms
(Laws et al., 2016; Previšić et al., 2021; Walters et al., 2008).
Moreover, alien species, if they become invasive, are a bio-
logical stressor that may affect ecosystems far from the location
of initial introduction (Early et al., 2016; Vilà et al., 2011).

The relevance of the spatial dimension for the propagation
of stressors and their effects depends on the connectivity of
habitats (Heino et al., 2021). The connectivity of habitats in a
landscape is determined by the dispersal ability of organisms,
the distance between habitat patches, and the influence of the
landscape structure on dispersal, including dispersal mortality
(Amarasekare, 2004; Streib et al., 2022). Physical structures in
the landscape such as dams or roads can strongly constrain the
movement of resources and organisms, thereby reducing
habitat connectivity (Lange et al., 2018). Chemical pollution can
also represent an “invisible wall” impeding dispersal of or-
ganisms (Schiesari et al., 2018). Stressors can also directly affect
the dispersal ability of organisms through effects on their
fitness.

While we have so far discussed the spatial dimension from
the perspective of organisms, the stressors themselves often
have different spatial profiles that determine the local co‐
occurrence in a habitat patch: while some stressors are very
local (e.g., emission of chemical), others occur at the scale of
landscapes or regions (e.g., heatwave, drought; Boyd
et al., 2018; Brown et al., 2014; Morris et al., 2022; Streib
et al., 2022). Chemicals can create spatial gradients of ex-
posure in a landscape through a combination of transport

processes and diffusion as well as processes decreasing their
bioavailability such as degradation or binding to matter (e.g.,
soil, sediment; Schiesari et al., 2019). Understanding the spatial
patterns of stressors is a necessary prerequisite to predict the
identity of (multiple) stressors a population, community or food
web is exposed to (Geary et al., 2019). The same applies to
chemical mixtures.

Overall, both multiple stressor research and chemical mix-
ture research have largely ignored the temporal and spatial
dimension. This evokes questions on the degree of ecological
relevance achieved. Both research areas would benefit from
closer cooperation on how to integrate the temporal and
spatial dimension into study design. The temporal dimension
could be integrated by using realistic stressor dynamics
(Gunderson et al., 2016) or through experimental designs that
allow for subsequent parameterization of models that can
predict the effects for different temporal dynamics (Bart
et al., 2022; Goussen et al., 2020). The spatial dimension could
be integrated by considering different habitat patches within
an experimental unit (e.g., Turunen et al., 2018), but for very
mobile (e.g., flying) organisms and organisms that are larger
than arthropods, field studies and process‐based models may
be more feasible.

PROCESS‐BASED MODELS FOR
PREDICTING ECOSYSTEM EFFECTS
OF MULTIPLE STRESSORS AND
CHEMICAL MIXTURES

To date, the focus on meta‐analyses and on experiments
with limited realism (see above) has delayed the development
of a predictive understanding of the joint effects of multiple
stressors and chemical mixtures in ecosystems. Process‐based
models may fill knowledge gaps of when and how chemical
and nonchemical stressors interact to cause ecological sur-
prises. They are the only tool that can capture all temporal and
spatial scales as well as all biological levels, although not in a
single model. Yet, this typically comes at the cost of uncertainty
and complex model development requires a strong coordi-
nated effort (Hodgson & Halpern, 2019). Most models can
easily be adopted in different research areas because param-
eters and variables in mathematical equations are open to
different interpretations. For example, a parameter that pro-
vides a mortality rate per unit increase of a variable could be
interpreted as a response to both a chemical and nonchemical
stressor. Several reviews have provided overviews on process‐
based models in ecotoxicology, with a general focus (Astuto
et al., 2022; Larras et al., 2022; Schmolke et al., 2010) or with a
focus on specific model types (Baas et al., 2009; Schmolke
et al., 2017; Sherborne et al., 2020). However, reviews ocusing
on community or food web models for chemical mixtures are
lacking. Similarly, reviews on process‐based models for mul-
tiple stressor research are rather scarce (but see Hodgson &
Halpern, 2019; van Moorsel et al., 2023; Pirotta et al., 2022;
Simmons et al., 2021), but a wide range of resources provides
an overview of ecological models for different biological levels
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and purposes (Cabral et al., 2018; Grimm & Berger, 2016; Jopp
et al., 2011; Jørgensen & Fath, 2011; Pilowsky et al., 2022;
Vellend, 2016). Most modeling approaches, ranging from
physiological to meta‐ecosystem models, could be applied in
both multiple stressor in chemical mixture research. In the
present study, we focus on selected model types and
challenges that could be fruitful for exchange between both
research areas.

At the organismal to population levels, dynamic energy
budget (DEB) models focus on the physiological effects of
stressors, and how these affect populations and communities
(Simmons et al., 2021). They have been widely applied in
studies on the effects of chemical and nonchemical stressors as
well as for combinations of chemical and nonchemical stressors
(Goussen et al., 2020; Matzelle et al., 2015; Sokolova, 2021).
Dynamic energy budget models for sublethal effects (e.g.,
growth, reproduction) of chemicals are often referred to as
DEBTox models (Jager, 2020; Nisbet et al., 2000). For mortality
as response, the abovementioned TKTD models are widely
applied for chemicals. They rely on experimental data and can
make educated extrapolations beyond the experimental con-
ditions, for example different temporal exposure patterns, if
observations from multiple time points are available (Ashauer
et al., 2016; Jager et al., 2006). Moreover, their model pa-
rameters may be related to species traits and recent studies
have shown their capacity to extrapolate effects to nontested
species (Gergs et al., 2015, 2019; Singer et al., 2023).
Toxicokinetic–toxicodynamic and DEBTox models can be used
for simple and complex chemical mixtures (e.g., Ashauer
et al., 2007; Baas et al., 2007; Bart et al., 2021), although
mechanistic effect interactions are not considered (but see
Cedergreen et al., 2017). The model approaches are open to
nonchemical stressors if relationships between stressor intensities
and effects over time are available. Overall, multiple stressor
research could strongly benefit from the progress made for
chemical mixtures with TKTD and bioenergetic models.

Experimental studies on multiple stressors and chemical
mixtures have often ocusin on the response of a single species
or taxonomic group, thereby providing limited insights into
potential effects in food webs and on ecosystem functions
(Martin et al., 2021; van Moorsel et al., 2023). Process‐based
models may in particular help to evaluate the effects of multiple
chemical and nonchemical stressors on (meta‐)communities,
(meta‐)food webs, and (meta‐)ecosystems (Hodgson & Halpern,
2019). Understanding the effects at these scales and biological
levels is complex because stressors may directly affect a range
of species where the effect sizes likely vary strongly. In addition,
stressors can indirectly affect a focal species, for instance by
directly affecting its prey (Beauchesne et al., 2021). Trophic
(Eklöf et al., 2013) and other (Kéfi et al., 2016) interactions
generate a complex network of species interactions. These
networks are typically well connected, such that direct effects
of a stressor on a species propagate to other species (Zelnik
et al., 2022). Importantly, indirect effects can overweight or
reverse direct effects (Fleeger, 2020; Spaak et al., 2017).

Classic ecological models such as Lotka–Volterra or stage‐
structured population models have highlighted the relevance

of considering species interactions when predicting the
effects of stressors. For example, such models unraveled that
the direction of stressor interaction on a population is driven by
the shape of the density‐dependence of population growth
(Hodgson et al., 2017) and that species interactions interact
with stressor intensity in determining effects on communities
(Thompson Patrick et al., 2018).

Predicting the response of communities, food webs, or
ecosystems to chemical or nonchemical stressors requires un-
derstanding the interactions of two complex networks. First,
the network of direct effects on each species individually and,
second, the network of all species interactions. This is further
complicated because stressors can also affect species inter-
actions, for example through changes in their behavior and
development (Hanazato, 2001; Liu et al., 2022). Community
ecology has concluded that obtaining a high‐resolution
species interaction network seems unsurmountable, even in the
absence of stressors (Barbier et al., 2021; Weiss‐Lehman
et al., 2022). A way forward may be to replace the paradigm
of high precision with high generality and focus on a “general”
rather than a focal community. For example, the cavity method
assumes identical species interactions and requires only certain
statistical properties of species interactions to predict com-
munity dynamics (Barbier & Arnoldi, 2017). A related approach
focuses on the average interaction strength between species
and between stressors and species, and is likely to at least
reliably predict the average effect of stressors on the com-
munity (Weiss‐Lehman et al., 2022). Several other approaches
can be used to tackle the challenge posed by the two complex
networks. Rather than ocusing on species, trait‐based ap-
proaches group the large number of species in communities
and food webs, often based on a few core traits such as body
size, resource uptake, and feeding preference (Allhoff
et al., 2015; Kiørboe et al., 2018; Litchman & Klausmeier, 2008;
Schneeweiss et al., 2023; Williams & Martinez, 2000). Fur-
thermore, bioenergetic models have the potential to integrate
metabolism with body size and density‐dependent intra‐ and
inter‐specific species interactions to predict how chemical or
nonchemical stressors affect the flow of biomass. Similarly,
trophic network models can link species metabolism, con-
sumption, and growth and could be used to predict how
stressors affect species interactions and biomass dynamics
across trophic levels (Simmons et al., 2021). Finally, size‐spectra
models can consider how stressors affect food webs based on
an assumed inverse relationship between species body size
and abundance, and size‐dependency of predator–prey inter-
actions (dos Santos et al., 2017; Jackson et al., 2021).

Several community, food web, and ecosystem models have
been developed to predict the effects of multiple stressors. For
example, a food web model and a complex ecosystem model
were used to study the effects of fishing, acidification, and
warming on the marine ecosystem (Cornwall & Eddy, 2015;
Griffith et al., 2012). A network model predicted synergistic
interactions of multiple stressors on several organism groups in
a marine arctic ecosystem (Arrigo et al., 2020). A few ecotox-
icological models for communities and food webs have been
developed, as reviewed by Larras et al. (2022). Promising
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approaches that consider chemicals are the Streambugs model
simulating populations of freshwater invertebrates in streams
(Kattwinkel et al., 2016; Mondy & Schuwirth, 2017; Schuwirth &
Reichert, 2013), the AQUATOX model simulating lake food webs
(Park et al., 2008), and the ALMaSS modeling framework that has
been used to simulate several terrestrial populations, including
birds, invertebrates, and vertebrates (Sibly et al., 2009; Topping
& Lagisz, 2012; Topping & Weyman, 2018). These models cur-
rently do not consider chemical mixtures, but their incorporation
should require a minor effort compared with the general model
development. Generally, if a reliable food web or ecosystem
model was available for a specific research question or eco-
system under scrutiny, incorporating chemical and nonchemical
stressors should be comparatively simple (for guidance on model
selection see Geary et al., 2020).

To date, a key finding from the various modeling ap-
proaches is the context dependency of multiple stressor effects
across different scales of time, stressor intensity, and biological
organization. For example, a mechanistic model of two stres-
sors showed that classification of their interactive effect de-
pended on when it was measured, stressor intensities, and
whether it was based on the physiological, population, or
consumer‐resource level (Turschwell et al., 2022). A major
shortcoming of most ecological models used for multiple
stressors and chemicals is the omission of stressor adaptation
and thereby ignorance of eco‐evolutionary dynamics (Boyd
et al., 2018; van Moorsel et al., 2023). Notwithstanding,
process‐based models are valuable tools to integrate chemical
and nonchemical stressors, formulate hypotheses, make pre-
dictions, and explain empirical results, including contradictions
(Breda et al., 2022; De Laender, 2018).

DATA‐DRIVEN MODELS FOR LARGE
SCALES IN THE AGE OF BIG DATA

The increasing availability of global‐ and continental‐scale
data from ecosystems including data on climate, species oc-
currence, and a range of stressors in concert with increasing
computational power opens new avenues for large‐scale data
analyses (Dafforn et al., 2015; Pirotta et al., 2022). Data‐driven
approaches have been used for multiple chemical and non-
chemical stressors to study effects on ecosystems at large
spatial and temporal scales. Global data on a range of land use‐
related stressors and from terrestrial field studies allowed the
effects on different dimensions of terrestrial biodiversity to be
quantified (Newbold et al., 2015). Several studies analyzed
the relationship of chemical exposure, aggregated with mixture
models like concentration addition, with ecological indices or
community composition of different organism groups, high-
lighting the ecological relevance of chemical mixtures (De Zwart
et al., 2006; Lemm et al., 2021; Malaj et al., 2014; Posthuma
et al., 2019). Furthermore, long time series have allowed the
response of ecosystems to multiple global change factors over
time to be analyzed (Fraker et al., 2022; Vaughan & Gotelli,
2019). The divide between multiple stressor and chemical
mixture research is fading in these studies. Multiple recent

studies have considered the effects of chemical mixtures in
concert with those of nonchemical stressors on ecosystems at
regional, national, and continental scales (Grizzetti et al., 2017;
Lemm et al., 2021; Posthuma et al., 2019).

These large‐scale data analyses confirm the prediction of
process‐based models that the response to stressors is context‐
dependent. For example, data analyses demonstrated that the
relative importance of chemical mixtures and nonchemical
stressors but also of stressor interactions varies spatially and
temporally at a given scale (Grizzetti et al., 2017; Kefford
et al., 2023; Lemm et al., 2021; Posthuma et al., 2019). Con-
sidering this scale is important when interpreting the results of
such studies because the temporal and spatial scale can de-
termine the shape and importance of stressors and their in-
teractions (Fraker et al., 2022; Mack et al., 2022; Pirotta
et al., 2022). Moreover, to conduct large‐scale analyses often
requires simplifying assumptions and data aggregation, and
this may result in biased estimates of individual stressor effects
and interactions (Jähnig et al., 2020). For example, to avoid the
“curse of dimensionality,” which implies severe loss of stat-
istical power when establishing stressor–response relationships
for individual chemicals, chemicals have often been ag-
gregated into a single mixture metric. This prohibits detecting
and considering potential interactions between individual
chemical and nonchemical stressors. In addition, aggregating
data on ecological communities into broad biodiversity met-
rics can mask the decline of species that are relevant for long‐
term community persistence (Jähnig et al., 2020). Never-
theless, findings from large‐scale empirical studies can sup-
port prioritization of management efforts and evaluation of
the efficacy of past policy and management efforts (Hallmann
& Jongejans, 2021).

ELEMENTS OF A JOINT FRAMEWORK
Current political frameworks such as the European Water

Framework Directive and the Kunming–Montreal Global Bio-
diversity Framework aim to restore and conserve considerable
fractions of Europeans freshwater ecosystems and global eco-
systems, respectively. This requires scientific frameworks that
provide reliable prospective (enabling protective measures)
and retrospective (enabling restoration measures) assessments
on the response of ecosystems to chemical and nonchemical
stressors. Such assessments are particularly pressing in face of
increasing climate change impacts on ecosystems as well as
likely increasing chemical pollution given a projected approx-
imate doubling of chemical production within a decade (Naidu
et al., 2021). Below we outline elements of an overarching
framework that considers both multiple stressors and chemical
mixtures, and that is based on the tools and methods discussed
above (Figure 3). The framework can serve three functions:
(1) supporting an integrative assessment of the effects of
chemical and nonchemical stressors in case studies, (2) pro-
viding elements that can structure reflection and communica-
tion of uncertainties in cases where an integrative assessment
is beyond capacity, and (3) urging future synthesis projects

Mixtures and stressors—Environmental Toxicology and Chemistry, 2023;42:1915–1936 1925

wileyonlinelibrary.com/ETC © 2023 The Authors

D
ow

nloaded from
 https://academ

ic.oup.com
/etc/article/42/9/1915/7729690 by N

H
S Scotland Stirling U

niversity Placem
ent Students user on 18 February 2025



to move beyond simple aggregation of potentially biased
individual studies.

Define scope, biological level, and scale
Any joint assessment of the effects of chemical and non-

chemical stressors requires a definition of the scope, biological
level, and scale: (1) Type of (meta‐)ecosystem. This defines the
general environmental context (e.g., stream, agricultural soil).
(2) Organism group(s). (3) Biological level. Typically ranging
from populations to meta‐ecosystems. (4) Temporal and spatial
scale. This defines the ecological and stressor complexity,
which ranges from a single population or community in an
isolated patch with constant stressors and a short duration to
multiple connected food webs in a landscape (meta‐food webs)
with strong temporal dynamics and associated stressors with
varying spatial and temporal profiles over longer time scales.
(5) Retrospective or prospective, if prospective define point in
future. (6) Level of aggregation. This defines the acceptable
level of simplification. It ranges from highly aggregated metrics
for organisms (e.g., total abundance or biomass) and stressors
(e.g., mixture metric) to lowly aggregated, that is, highly re-
solved, information for organisms (e.g., haplotypes of all pop-
ulations) and stressors (e.g., concentrations or intensities
for each).

Supporting Information, Table S1, provides an overview of
how these definitions correspond to data typically generated

with the methodical approaches discussed above. This first
step defines the overall complexity and thereby determines
what is achievable in understanding and prediction under the
current state of knowledge. With increasing scales and bio-
logical level and the higher aggregated the metric used and
the availability of data for organisms, most likely only a qual-
itative prediction can be achieved. We suggest that any study
should reflect how their scale impacts the assessment. For ex-
ample, a sufficiently long temporal scale was key to unravel
stressor interactions between climate change, acidification, and
UV‐B radiation in lakes, where studies with a more limited scale
may have incorrectly attributed ecological effects primarily to
acidification (Schindler et al., 1996).

Specify organisms and stressors
The next step is to specify the organisms (e.g., the species

making up a community) and stressors, potentially starting with
a conceptual model (for details see Suter et al., 2002). Three
basic cases can be delineated (cf. Schneeweiss et al., 2023): (1)
Organisms known (e.g., list of terrestrial arthropod species) and
stressors known (e.g., list of chemicals and nonchemical stres-
sors). (2) Organisms unknown (e.g., unknown composition of
terrestrial arthropods) and stressors known. In this scenario,
typical species of the selected organism groups in an eco-
system could be used (e.g., Jupke et al., 2022, 2023; Rodwell
et al., 2018). Otherwise, databases and literature may allow the

FIGURE 3: Elements of a framework for a joint assessment of the effects of multiple stressors and chemical mixtures.
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typical species occurring in the ecosystem under focus to be
defined. If the purpose is restoration, lists of expected species
in the absence of stressors could be used. (3) Organisms un-
known and stressors unknown. In this scenario, typical stressor
scenarios for a specific ecosystem scenario are largely lacking
(Geary et al., 2019; Orr et al., 2022), but relevant chemical and
nonchemical stressors can be extracted from (spatiotemporal)
databases and publications (e.g., Domisch et al., 2015; Kriticos
et al., 2014; Newbold et al., 2015; Poggio et al., 2021). For
organisms see previous case.

This step combines information on all stressors, irrespective
of whether they are chemical or nonchemical, although they
may be aggregated into different metrics.

Characterize stressor profiles and benchmarking
The chemical and nonchemical stressor profiles need to be

characterized, which includes the intensity and, depending on
the scope and scale of the assessment, the spatiotemporal dy-
namics of each stressor. If data on the stressor intensity (e.g.,
concentration for chemical, nutrient level) and temporal or spatial
dynamics is required, these may be obtained from (spatio-
temporal) databases (Dafforn et al., 2015), monitoring databases
from governmental authorities, or publications. Overall, this re-
sults, unless the spatial dimension is beyond scope, in maps of
stressor intensity for each stressor, potentially for different time
points. Previous studies have mainly focussed on the spatial di-
mension and typically used simplified proxies for stressors (e.g.,
van Gils et al., 2020; Grizzetti et al., 2017; Lemm et al., 2021;
Vörösmarty et al., 2010), but temporally resolved data on some
environmental factors (see datasets in Lehner et al., 2022) and
chemicals (e.g., Wolfram et al., 2021) are already available and
may be used to construct spatiotemporal profiles.

Subsequently, the absolute level of stressor intensity should
be benchmarked to obtain a relative level, which is required for
different null models and enables stressor ranking and priori-
tization. Benchmarking requires data on standardized effect
levels for the organisms in focus (e.g., thermal maximum re-
sulting in adverse behavioral changes in fish [CTmax], EC50).
This is widely available for chemicals, but quite rare for non-
chemical stressors, except for temperature (e.g., Pottier
et al., 2022; see General mechanisms and identification of in-
teractions with null models section). Data scarcity will often
dictate to benchmark against representative species for an
organism group, but if data allows, concepts such as species
sensitivity distributions or sensitivity rankings provide
community‐level benchmarks for chemical and nonchemical
stressors (Collas et al., 2018; Posthuma et al., 2019; Rubach
et al., 2010). In the absence of data, environmental quality tar-
gets or classes may be used to assign qualitative levels of relative
stressor intensity (e.g., Schäfer et al., 2016), where so‐called
safety factors that are frequently used for chemicals need to be
accounted for. Benchmarking will convert the output for stressor
intensity (e.g., maps over time per stressor) into species‐ or
organism‐group‐specific outputs of relative stressor intensity.

Finally, to later evaluate the effects (see Data‐driven models
for large scales in the age of big data section), stressor

intensity–response relationships should be available or at least
data that allow stressor intensities to be translated into po-
tential effects per organism under focus (for a qualitative as-
sessment see Bracewell et al., 2019).

Characterize species distribution
Depending on the spatial and temporal scale of the study,

data on occurrence of species over time and space may be
required. For highly resolved spatial assessments, species dis-
tributions can be obtained via species distribution modeling
(Ovaskainen & Abrego, 2020) or from spatiotemporal data-
bases (e.g., Global Biodiversity Information Facility, 2023).
Otherwise, aggregated spatial units such as ecosystem typol-
ogies may simplify this task, where several typologies provide
lists of typical species occurring in an ecosystem type (e.g.,
Jupke et al., 2022; Rodwell et al., 2018).

Evaluate potential stressor interactions
To consider stressor interactions in the assessment will in most

cases be hampered by data scarcity. Where robust knowledge,
accounting for context‐dependency (e.g., on stressor intensities)
and species‐specificity, of a stressor interaction is available this
can be considered as relative or absolute change in effects or
stressor intensities (see next step). Through selection of the null
model the probability of overseeing important interactions can
be reduced (e.g., the stressor addition model rather over-
estimates the joint effect; Dey & Koops, 2021). The integration of
chemical and nonchemical modes of action in a joint classi-
fication system, for example physiological modes of action (see
Characterizing stressors and their modes of action section), could
in the future provide a theoretical foundation for the identi-
fication of effect interactions.

Estimate direct effects on organisms
The estimation of direct effects contains three elements: (1)

Evaluate temporal stressor profiles with respect to the organ-
isms under focus. Only where the variability in the stressor is
high at time scales shorter than the generation time of organ-
isms does it need attention (for details see Jackson et al., 2021)
in terms of evaluating effects at different time points. Whether
stressor order matters may be decided based on concepts such
as co‐tolerance and stressor action curves (see The temporal
and spatial dimension of stressors and their effects section).
(2) Evaluate spatial stressor profiles with respect to organisms
under focus. Again, only where spatial variability would result in
variable exposure of a species does it need attention in terms
of evaluating effects at different locations. (3) Estimate the di-
rect joint effect of all chemical and nonchemical stressors based
on a null model (see The temporal and spatial dimension of
stressors and their effects section), and consider superimposing
potential interaction effects. This step will typically produce an
effect estimate for each species or related aggregated units
such as organism groups. If time and space are considered
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these effect estimates would be made for different time points
and mapped spatially. Depending on the scope of the as-
sessment the multiple layers of effect estimates could sub-
sequently be aggregated across species, time, and space (e.g.,
maximum or mean stressor effect; for a probabilistic approach
see Meent et al., 2020), which is likely appropriate where effect
estimates are relatively constant over time and space (Vos
et al., 2023). The effect estimates can directly be used in de-
cision making (e.g., stressor prioritization), tested in experi-
ments, or used in data‐driven analyses of various kinds (e.g.,
testing the outcome against species and stressor distributions
in another region). They may also guide the calibration of
process‐based models as described below.

Optional: Prediction of effects with
process‐based models

In all cases where the definition of scope and scale require a
dynamic (i.e., different time points) and spatially resolved (i.e.,
variable exposure) assessment, process‐based models are
likely needed to make predictions (see Process‐based models
for predicting ecosystem effects of multiple stressors and
chemical mixtures section). Whenever multiple time points are
considered and multiple populations are involved, species in-
teractions and thereby indirect effects become relevant (see
Process‐based models for predicting ecosystem effects of
multiple stressors and chemical mixtures section). This may in
turn require a high level of aggregation of organisms and
stressors to keep the modeling feasible. Complex temporal
stressor profiles will typically require the use of bioenergetic or
TKTD models, potentially integrated in more complex models
reflecting higher biological levels (e.g., food web model).
Complex spatial stressor profiles will typically require land-
scape and ecosystem models that also consider dispersal be-
sides species interactions (Vos et al., 2023). These models can
also deliver results on potential recovery for stressor mitigation
scenarios and thereby inform management.

CONCLUSIONS
The historical divide between ecotoxicology and (applied)

ecology has lead to the development and use of different
methods and tools in multiple stressor and chemical mixture
research. Given similar challenges such as diagnosing inter-
actions within and between multiple stressors and chemical
mixtures, characterizing chemical and nonchemical stressors
including their modes of action, and designing experiments
that consider the spatiotemporal complexity of stressor pro-
files, the integration of the different methods and tools would
likely advance both research areas. Process‐based models and
data‐driven approaches are in particular open for joint devel-
opment as well as for enhancing mechanistic understanding
and predictive capacity with respect to the joint effects of
chemical and nonchemical stressors. Our framework provides
elements toward an integrative assessment of chemical and
nonchemical stressors. While its application may exceed the

capacity of many individual studies, its merit lies also in struc-
turing reflection and communication of uncertainties that arise
from ignoring certain elements. For example, this may result in
acknowledging uncertainties in how chemical mixtures or other
stressors contribute to diagnosed effects (Birk et al., 2020),
although in other cases it may be clear that stressors such as
direct resource extraction strongly dominate other effects and
detailed assessments are not required (Caro et al., 2022;
Jaureguiberry et al., 2022). The integrative assessment would
comprehensively inform environmental quality management,
whereas several current assessments, for example in the con-
text of the European Water Framework Directive, are separated
between chemicals and other stressors with different ap-
proaches, making the assessments partly incomparable (Brack
et al., 2017). Finally, our framework may urge synthesis projects
to move toward more comprehensive and integrative ap-
proaches, for instance when aiming to assess the influence of
different chemical and nonchemical stressors on biodiversity
loss. The rapid expansion of novel computer‐based and mo-
lecular approaches, and the growing availability of high‐
resolution environmental and ecological data is likely to
strongly reduce the effort required to apply this framework.

Supporting Information—The Supporting Information is avail-
able on the Wiley Online Library at https://doi.org/10.1002/
etc.5629.
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