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Remote monitoring is essential for healthcare digital transformation, however, this poses greater
burdens on healthcare providers to review and respond as the data collected expands. This study
developed a multimodal neural network to automate assessments of patient-generated data from
remote postoperative wound monitoring. Two interventional studies including adult gastrointestinal
surgery patients collected wound images and patient-reported outcome measures (PROMs) for 30-
days postoperatively. Neural networks for PROMs and images were combined to predict surgical site
infection (SSI) diagnosis within 48 h. The multimodal neural network model to predict confirmed SSI
within 48 h remained comparable to clinician triage (0.762 [0.690–0.835] vs 0.777 [0.721–0.832]), with
an excellent performance on external validation. Simulated usage indicated an 80% reduction in staff
time (51.5 to 9.1 h) without compromising diagnostic accuracy. This multimodal approach can
effectively support remote monitoring, alleviating provider burden while ensuring high-quality
postoperative care.

There has been growing recognition in recent years from governments
and healthcare organisations that digital transformation is not just
desirable, but essential to the delivery of healthcare in the future1–3. These
represent potentially large-scale and cost-effective methods to promote
healthier lifestyles across populations, and to monitor andmanage health
conditions2,4,5, with emerging real-world case studies6. Furthermore, if
effectively and equitably implemented within global health systems, these
digital health interventions (DHIs) have the potential to enhance the
accessibility and efficiency of healthcare2.Within thefield of surgery, there
is accelerating interest in DHIs for remote postoperative monitoring7.
This is viewed as a route to facilitate rapid recognition and appropriate
response to suboptimal patient recovery or potential postoperative
complications, both of which are critical in minimising avoidable mor-
bidity andmortality8. Such interventions are particularly valuablewith the
trend towards earlier discharge to the community, as complications that
would otherwise have occurred under the direct care of surgical teamswill
now occur at home9.

However, there is widespread acknowledgement that the potential of
DHIs has yet to be realised within healthcare systems10. As the amount and
complexity of data collected on patients expand as part of remote mon-
itoring, this poses even greater burdens on health services to review and
respond11. Without appropriate staff allocated and/or decision assistance, it
is uncertain how these DHIs could be could be effectively integrated into
routine clinical practice. The nature of DHIs provide the opportunity to
incorporate automated assessment into these remotemonitoring pathways.
There is early evidence that neural network models can utilise multimodal
data to potentially to meet or exceed clinician diagnostic capabilities12,
although further research is needed to validate these findings in clinical
settings. These are a form of deep learning which have proven adept clas-
sification by learning hierarchical patterns in the data through multiple
layers of nonlinear transformations, enabling the network to identify
complex relationships and features13. This would facilitate real-time clinical
recommendations on a large scale, without significantly burdening
healthcare staff. However, there is currently no evidence of the use of these
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models for automated assessment within remote monitoring pathways in
surgery.

Surgical-site infections (SSI) are a promising initial target as one of the
most common postoperative complications14,15, and being associated with a
substantial impact onmorbidity andmortality15,16, and healthcare utilisation
of patients17. SSI surveillance through remotewoundmonitoring has already
been shown to allow earlier diagnosis, reduce unnecessary healthcare
attendance, and improve the quality of care18,19. The symptoms of SSI can be
difficult to distinguish from the expected inflammation from the surgical
incision, with clinicians needing to consider a combination of patient-
reported symptoms, and visual or tactile evidence to diagnose20. This can
include localised pain, swelling (oedema), redness (erythema), heat (calor),
or pus; as well as systemic responses to infection (fever). This multimodal
assessment is considered essential for remote postoperative wound surveil-
lance by patients and clinicians21, particularly given there is evidence that use
ofPROMsalone can lead tohigher falsepositive rates (being sensitivebutnot
necessarily specific to the diagnosis of SSI)18,22. Therefore, this study aimed to
develop a neural network framework for the automated assessment of
multimodal patient-generated data (patient-reported outcome measures
[PROMs] and wound images) to predict the need for in-person review
according to their risk of SSI. Furthermore, it aimed to evaluate strategies for
how automated assessment could be effectively implemented within a
remote postoperative wound surveillance pathway7,19.

Results
There were 423 patients who received the intervention across the studies:
52.7%, n = 223/423 in the “Tracking wound infection with smartphone
technology” (TWIST) trial and 47.3%,n = 200/423 in the ImplementatioN of
Remote Surgical wOund Assessment during the coviD-19 pandEmic”
(INROADE) study. While there were similarities in patient characteristics
across both studies (Table 1), there were notable differences which was in
part due to the inclusion of patients undergoing elective surgery in
INROADE.Thosewhowere enrolled in INROADEwere significantly older
(mean age: 48.0 vs 41.8,p < 0.001), andmore likely to beundergoingopenor
more complex procedures when compared to the TWIST cohort. Fur-
thermore, there was a significantly higher rate of 30-day SSIs observed
(16.5% vs 9.4%, p = 0.042)

Of all patients, 75.4% (n = 319/423) submitted a response for clinical
review across both studies (Table 1), with a median of 3.0 responses per
active patient in TWIST (IQR: 2.0–3.0), and 8.0 in INROADE (IQR:
4.0–10.0). Furthermore, 3.7% (n = 57/1545) of responses were submitted
within 48 h of a clinical diagnosis of SSI.

Overall, therewere 1545 responses containing PROMs collected across
the clinical studies. There was significant heterogeneity in symptoms of SSI
reported by patients across the studies (Supplementary Fig. 1), with the
majority of patients reporting no symptoms (71.9%, n = 1111/1545) or
isolated symptoms (16.8%,n = 260/1545).While the event rate of confirmed
SSI within 48 h was low across both studies (INROADE: 3.8% [n = 44/
1167], TWIST: 3.4% [n = 13/378]), the rate of suspected SSI based on
remote review of PROMs was higher (INROADE: 14.4% [n = 168/1167],
TWIST: 15.6% [n = 59/378]).

Symptoms of concern highlighted during remote review of PROMs
was generally consistent with those observed in patients with confirmed
diagnosis of SSI (Supplementary Fig. 1; Supplementary Tables 1-2),
although was consistently more conservative. Clinician suspicion of SSI
based on remote review of PROMswas associated with an increasing rate of
confirmed SSI diagnoses within 48 h from 1.4% (low risk on remote review)
to 24.0% (high risk on remote review).

Clinician suspicion of SSI based on remote review could be predicted
with almost complete accuracy whether an multilayer perceptron (MLP)
model (0.988, 95% CI: 0.983–0.993) or logistic regression approach (0.984,
95% CI: 0.978–0.991) was used within INROADE, with equivalent model
performance on external validation (Fig. 1, Table 2). While prediction of
confirmed SSI within 48 h was significantly lower for both modelling
approaches, discrimination remained excellent. Notably, these approaches

both demonstrated equivalence to clinician performance at “ruling out”
PROMs with no suspicion of SSI on remote review.

There were 2615 images collected across the clinical studies, with
similar but low event rates between the development (suspected SSI rate on
remote triage = 4.3% [n = 91/2125], confirmed SSI rate within 48 h = 3.5%
[n = 74/2125]) and external validation datasets (suspected SSI rate on
remote triage = 6.5% [n = 32/490], confirmed SSI rate within 48 h = 1.6%
[n = 8/490]).

Using these data, independent convolutional neural network (CNN)
modelsweredeveloped for bothoutcomes of interest.While excellentmodel
performance was observed to predict the suspected SSI on remote triage
within the development data, this reduced on external validation for both
outcomesof interest (Fig. 1; Table 2).Class activationheatmapswereused to
explore model attention and demonstrated enhancement for clinically
important features in the visual assessment of SSI (Fig. 2).

Multimodal neural networks were constructed, incorporating the
respective MLP and CNN models. Excellent model performance was
observed to predict suspected SSI based on remote review of both PROMs

Table 1 | Comparison of derivation and validation cohort
datasets

Datasets

Development
(n = 200)

External
validation
(n = 223)

p

Age (years) Mean (SD) 48.0 (16.3) 41.8 (17.2) <0.001

Sex Male 97 (48.5) 106 (47.5) 0.919

Female 103 (51.5) 117 (52.5)

Ethnicity BAME 5 (2.5) 10 (4.5) 0.402

White 195 (97.5) 213 (95.5)

BMI (kg/m2) Not obese
(<30 kg/m2)

133 (66.5) 161 (73.2) 0.166

Obese
(≥30 kg/m2)

67 (33.5) 59 (26.8)

Diabetes
mellitus

No 187 (93.5) 213 (95.5) 0.485

Yes 13 (6.5) 10 (4.5)

Operative
urgency

Elective 85 (42.5) 0 (0.0) <0.001

Emergency 115 (57.5) 223 (100.0)

Operative
approach

Minimally-
invasive

119 (59.5) 169 (75.8) <0.001

Open 81 (40.5) 54 (24.2)

Operative
contamination

Clean-
Contaminated

165 (82.5) 170 (76.2) 0.143

Contaminated/
Dirty

35 (17.5) 53 (23.8)

Operative
complexity

Minor/
Intermediate

17 (8.5) 37 (16.6) <0.001

Major 159 (79.5) 183 (82.1)

Complex Major 24 (12.0) 3 (1.3)

30-day SSI No 167 (83.5) 202 (90.6) 0.042

Yes 33 (16.5) 21 (9.4)

Time-to-
diagnosis of
SSI (days)

Mean (SD) 11.3 (5.4) 9.3 (6.3) 0.227

Usage of
intervention

No 34 (17.0) 70 (31.4) 0.001

Yes 166 (83.0) 153 (68.6)

Number of
responses (n)

Mean (SD) 7.0 (3.4) 2.4 (0.9) <0.001

BMIBodymass index,BAMEBlack, Asian, orMinority ethnic,SDStandard deviation,SSISurgical-
site infection.
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and wound images within the development data, and this remained
unchanged on external validation (Fig. 1; Table 2). Furthermore, the mul-
timodal neural network model to predict confirmed SSI within 48 h
remained comparable to clinician triage across both datasets, with an
excellent performance on external validation.

The baseline pathway (full clinical assessment) used in the
clinical studies (Supplementary Fig. 2a) was compared to the use of
automated assessment to rule-out “low risk” patient responses prior
to subsequent clinical assessment (Supplementary Fig. 2b) or to full
automation of assessment (Supplementary Fig. 2c). This was simu-
lated in a sensitivity analysis across a spectrum of cut-off values for

the thresholds for the probability of SSI according to the multimodal
model (Fig. 3).

An exemplar threshold of≤20% for thepredictedprobability of SSIwas
explored (Table 3). Both approaches for automated assessment maintained
an excellent discrimination for confirmed SSI within 48 h across the data
with a low failure rate, and this was equivalent to clinician review. Use of
automated assessment to screen out “low-risk” responses prior to clinical
review was associated with a significant reduction in staff-hours to triage
responses within a hybrid assessment pathway (9.1 h (−82.4%)). This
corresponded to a reduction in the annual full-time equivalent (FTE) per
1000 patient case-load from 0.176 to 0.031.

Fig. 1 | Diagnostic accuracy of different approaches of assessment of patient-
reported symptoms and wound images for the prediction of suspected and
confirmed diagnosis of SSI within 48 h. Depicts ROC (receiver operating

characteristic) curves for each neural network model developed and externally vali-
dated. This is shown for (a) Suspected SSI on remote clinical triage, (b) confirmed SSI
on in-person assessment, benchmarked against suspected SSI on remote clinical triage.

Table2 |Diagnostic accuracy (95%CI) of different approachesof assessmentofpatient-reported symptomsandwound images
for the diagnosis of SSI within 48 h across the development (INROADE) and external validation (TWIST) datasets

Clinical classification SSI within 48 h
Dataset Approach Development

(INROADE)
External
validation (TWIST)

Development
(INROADE)

External
validation (TWIST)

PROMs Logistic Regressiona 0.984 (0.978–0.991) 0.957 (0.938–0.976) 0.830 (0.765–0.895) 0.848 (0.722–0.974)

MLP 0.988 (0.983–0.993) 0.939 (0.915–0.963) 0.811 (0.732–0.890) 0.854 (0.738–0.971)

Clinician assessment – – 0.756 (0.683–0.828) 0.818 (0.697–0.938)

Wound images CNN 0.817 (0.768–0.867) 0.636 (0.543–0.729) 0.841 (0.790–0.892) 0.671 (0.437–0.904)

Clinician assessment – – 0.639 (0.586–0.692) 0.784 (0.605–0.964)

Multimodal (PROMs /
wound images)

Multimodal neural
network

0.893 (0.870–0.917) 0.875 (0.831–0.918) 0.762 (0.690–0.835) 0.834 (0.609–1.000)

Clinician assessment – – 0.777 (0.721–0.832) 0.918 (0.902–0.935)

CNN Convolutional neural network,MLP Multilayer perceptron (MLP), PROMs Patient-reported outcome measures, SSI Surgical-site infection.
aModels are reported in Supplementary Tables 2, 3.
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Furthermore, there was also significantly higher specificity for SSI
diagnosed within 48 h compared to full clinical assessment (0.944 [95% CI:
0.932–0.955] vs 0.894 [95% CI: 0.878–0.909]), leading to a significant
reduction in the recommendation for in-person review (115 (7.4%) vs 197
(12.8%), p < 0.001). In comparison, full automated assessment removed the
burden on staff to review responses, and provided the most sensitive
approach to identify SSI diagnosed within 48 h. However, due to the higher
rates of recommendation for in-person review (272 (17.6%) vs 197 (12.8%),
p < 0.001) this still poses a potentially avoidable burden on healthcare ser-
vices to review.

Discussion
Surgical demand and the burden posed by SSI is expected to continue to
growwith efforts toprovideuniversal healthcare coverage and toaddress the
post-pandemic elective surgical backlog23,24. This creates opportunities for
the proposed intervention to reduce the pressure on health services, yet also
an incentive to incorporate solutions tominimise its own burden to remain
feasible to deliver. These analyses were based on patient-generated data
from the largest prospective interventional studies on remote postoperative
wound monitoring. Neural networks were used to derive novel approaches
for the automatedassessment of bothPROMsand surgicalwound images to
identify wounds at “low risk” of SSI. The final multimodal model perfor-
mance was equivalent to clinician review for the identification of wounds
with SSI within 48 h confirmed on in-person clinical review, and model
performance remained consistently excellent on external validation. When
implementation within remote postoperative wound monitoring pathways
was simulated, automated exclusion of “low risk” wounds was estimated to
reduce the staff-time required to deliver by over 80%, while maintaining a
low failure rate when compared to a full clinician-led pathway.

With any modelling approach, it is essential that the features being
identified are of clinical importance. Of the patient-reported symptoms
related to SSI, there was significant heterogeneity in those reported (Sup-
plementary Fig. 1). All symptoms except wound oedema were significantly
associated with confirmed SSI within 48 h (Supplementary Table 2),
although only wound erythema and discharge were independently asso-
ciated. TheCDCcriteria20 assumes that all symptomsof inflammation are of
equal clinical significance. These represent the most clinically obvious and
late-onset symptoms of infection, which does not preclude the other
symptoms providing an equal or potentially more significant diagnostic or
prognostic role (even if patientsmay be less reliably able to identify these). In
rare cases (Supplementary Fig. 1), patients did not report any clinical

symptoms of SSI yet were still diagnosed with an SSI within 48 h. This
indicates that either there can be rapid change in the presentation of
symptoms in somecases, or that aminority of patientsmayfind it difficult to
reliably determine symptoms of SSI. The explainability of the CNNmodels
was also exploredusing class activationheatmaps to ensurepredictionswere
alignedwith the pathognomonic features of SSI (Fig. 2).Within this context
the class activation heatmaps demonstrated correlation with the wound
itself, but more specifically wounds that had been highlighted as having
evidence of SSI by clinical staff, such as erythema or purulent fluid being
present. This ensures that the CNN predictions are transparent and
explainable, and so aids in bridging the gap in trust between machine
learning, and healthcare staff and patients25–27.

These methods of automated assessment of patient-generated were
developed to identify wounds which could be confidently evaluated to be at
“low risk” of SSI (“rule out” approaches). While diagnostic accuracy based
on PROMswas excellent for both outcomes of interest, and remained so on
external validation (Table 2). Furthermore, the performance of the multi-
modal models was similar to the DeepWound CNN model (AUC: 0.84)28,
despite DeepWound being trained on image data with a higher event rate of
SSI (26.6% vs 3.5% in INROADE). While only moderate discrimination
observed for the CNNmodels on external validation (Table 2), it should be
noted that this has not yet been performed for the DeepWound CNN
model. Overall, clinical triage remained typically the most accuratemethod
to assess wound images and identify those which would receive an SSI
diagnosiswithin 48 h (Table 2).However, an equivalent diagnostic accuracy
was achievable with the multimodal NN, demonstrating the capability to
approximate clinician assessment. This was confirmed in practice when
both strategies for the implementation of the multimodal neural network
model as part of automated assessment pathways maintained diagnostic
accuracy equivalent to the baselinepathway (Supplementary Fig. 2; Table 3).
These pathways have a distinct advantage in allowing a substantial reduc-
tion in the burden of staff to deliver (Table 3; Fig. 3). However, only the
hybrid approach also reduced the number of patients recommended for in-
person review. This suggests that while these models can accurately “rule
out” responses without clear evidence of SSI, clinicians currently remain
superior at reviewing more complex cases.

This work presents the most comprehensive analysis to date of
methods for automated remote assessment of surgical wounds, with several
notable strengths to the approach. Firstly, the combination of the TWIST
and INROADE studies represents one of the largest repository of surgical
wound images for research, and the only known dataset of surgical wounds

Fig. 2 | Class activation heatmaps.Depicts the original wound images and images enhanced with class activation heatmaps from the convolutional network model. This is
shown for (a) images with confirmed SSI within 48 h, (b) images with no suspicion or diagnosis of SSI within 48 h.
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annotated by both clinicians and patients for the presence of SSI. Together
with well-established deep learning techniques, this allowed the first known
multimodal neural network model to provide a unified approach for pre-
dicting of surgical-site infection. This incorporated the first known appli-
cation of class activation heatmaps to surgical wounds published to date,
enhancing transparency and interpretation of predictions made. Further-
more, this analysis also incorporated evaluation of not just model perfor-
mance on external validation, but also considered the healthcare impact
within clinical pathways. This was guided by stakeholder input11, and
allowed quantification of the potential impact on the burden to deliver as
well as the diagnostic accuracy of remote triage.

However, there were also several important limitations. Firstly, there
was anoverall low event ratewithin thedevelopmentdataset,withonly 3.7%
(n = 57/1540) of responses submittedwithin 48 h of an SSI diagnosis. This is
partially attributable to patient adherence, but also the lack of direct clinical
validation of patient responses in comparison to the gold-standard of in-
person assessment within the studies. When patients received a clinical

recommendation, it was up to them to decide if and where to attend for
further clinical assessment. This is reflective of how the intervention would
function in practice. However, unless in-person review was conducted
swiftly, theremay be evolution in the surgical wound in the interim, and so a
discrepancywith thepatient-submitteddata.While this lowevent rate limits
the statistical power of modelling approaches for the diagnosis of SSI, the
intended use case for the models developed in the analysis was for the “rule
out” of wounds at a low-risk of infection to reduce the burden to deliver
remote postoperative wound surveillance. Secondly, the hospitals involved
in the clinical studies serve apredominantlyWhite ethnicpopulation, and so
few patients of other ethnic backgrounds were able to be enrolled (Table 1).
It iswell established that there is anunderrepresentationof darker skin tones
withinmedical learningmaterials and image repositories29,30. Both clinicians
and deep learning models can perform poorly at identification of the visual
components of the SSI diagnostic criteria which can present differently in
these patients20. Further training and validation of remote wound assess-
ment across a spectrum of skin tones is essential when implementing in

Fig. 3 | Sensitivity analysis of the simulated
implementation of automated assessment strate-
gies in practice, by thresholds for the probability
of SSI (%) according to the multimodal model.
Depicts the sensitivity analysis of the simulated
implementation of automated assessment strategies
in practice, by thresholds for the probability of SSI
(%) according to the multimodal model. This is
shown for (a) the failure rate (1- negative predictive
value [NPV]), (b) the burden on healthcare staff
(annual full-time equivalent (FTE) per 1000 patient
caseload for clinician triage).
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routine care, particularly in settings withmore ethnic diversity. Thirdly, due
to the nature of patient-generated images with smartphone cameras, these
can be heterogenous in resolution and visual elements. CNNmodels rely on
high quality and standardised images, and/or a large volume of images to
have robust performance. Therefore, future work to expand the image
repository used for model training would be expected to improve perfor-
mance further for detection of SSI, as well as sophisticated augmentation
strategies or transfer learning from datasets with more diverse skin tones.
Finally, these automated assessments only utilised information available at a
single point in time. Further improvement in model performance may be
achieved through the use ofmodels to account for the evolving nature of the
risk of SSI in the postoperative period31–33. This would have the potential to
provide new insights into the diagnosis of SSI at a subclinical stage, and even
prediction of wounds at high-risk to allow preventative interventions.

There has been growing recognition in recent years from governments
andhealthcare organisations that digital transformation is not just desirable,
but essential to healthcare delivery in the future4. However, decision assis-
tance in the form of algorithms or thresholds for alerts will be vital for the
anticipated benefits to be realised in practice, particularly as the amount and
complexity of data collected on patients expands. In this regard, this work
provides a foundation which can be emulated in the context of other digital
surveillance services seeking to formally incorporate algorithm-based
decision support or triage. Nevertheless, despite the clear evidence for
clinical utility for these models within a remote monitoring pathways, this
does not gurantee clinical adoption34. There are several issues that need to be
addressed before automated assessment can be more widely used within
clinical pathways. Firstly, the use of automated assessment within a remote
postoperative surveillance servicewould involve at least partial replacement
of clinical decision-making. Therefore, thesemodels would be classified as a
medical device and would require regulatory approval prior to formal
clinical use. Secondly, stakeholders must also have confidence in the results
of automated assessment to continue to engage35,36. Key drivers of engage-
ment in remote monitoring for many patients are “speaking to an expert”
and more personalised interactions with healthcare staff 11,19, which may be
affected by the partial automation of triage. Furthermore, there are wider

apprehensions regarding the safety and trustworthiness within the health-
care context27, which may reduce engagement and concordance with
recommendations among all stakeholders. Therefore, further work to
explore barriers and effective solutions for the use of automated approaches
in remote triage would be warranted. This may include clinical validation
studies to allow direct correlation of in-person examination findings with
patient-generated data11; improving explainability of the rationale behind
model decision-making, such as real-time class activation heatmaps; and to
evaluate automated assessment using patient-generated data within inde-
pendent studies, particularly among populations with more diverse skin
tones when using image-based data as in this context37.

Overall, this studyhas demonstrated that automated assessment can be
successfully deployed within remote postoperative wound surveillance
pathways to reduce the burden on healthcare staff to deliver without
compromising care, thus allowing resources to be appropriately directed to
those at greatest risk of SSI. As digital transformation of healthcare con-
tinues, implementation of these methods within care pathways will require
engagement of all stakeholders to ensure this can be integrated in a safe,
transparent, and acceptable manner.

Methods
This study reports the derivation and validation of a proof-of-concept deep
learning model to allow automated stratification of abdominal surgical
wounds according to their risk of SSI. This study was reported according to
the “Transparent reporting of amultivariable predictionmodel for individual
prognosis or diagnosis” (TRIPOD) statement38.

Data sources
This was an analysis of multimodal patient-generated data from two pro-
spective interventional studies conducted on the use of digital remote
postoperative wound monitoring: “Tracking wound infection with smart-
phone technology” (TWIST)”18 and “ImplementatioN of Remote Surgical
wOund Assessment during the coviD-19 pandEmic” (INROADE)19. These
included eligible adult patients (age ≥ 18 years) undergoing gastrointestinal
surgery across two participating hospitals within a single UK health board

Table 3 | Examples of the impact of implementation strategies of automated triage within a remote postoperative monitoring
pathway, in comparison to full clinical assessment

Implementation strategy within remote postoperative monitoring pathway

Full clinical assessment Hybrid
assessment
(rule out)

Full automated
assessment

Performance Cut-off probability for model – 0.2 0.2

Area under the curve (95% CI) 0.789 (0.728–0.850) 0.744 (0.678–0.809) 0.773 (0.712–0.834)

Sensitivity (95% CI) 0.684 (0.564–0.805) 0.544 (0.415–0.673) 0.702 (0.583–0.821)

Specificity (95% CI) 0.894 (0.878–0.909) 0.944 (0.932–0.955) 0.844 (0.826–0.863)

Positive predictive value (95% CI) 0.198 (0.142–0.254) 0.270 (0.188–0.351) 0.147 (0.105–0.189)

Negative predictive value (95% CI) 0.987 (0.981–0.993) 0.982 (0.975–0.989) 0.987 (0.980–0.993)

Failure rate (95% CI) 1.3% (0.7–1.9) 1.8% (1.1–2.5) 1.3% (0.7–2.0)

Burden to health service Responses requiring clinical triage 1545 (100.0%) 272 (17.6%) 0 (0.0%)

Staff-hours to triage (% reduction) 25.8 (0.0%) 9.1 (−82.4%) 0.0 (−100.0%)

Annual FTE / 1000 patient case-load (% reduction) 8.3% (−0.0%) 0.031 (−82.4%) 0.000 (−100.0%)

Clinical outcome No in-person review (low risk) 1348 (87.2%) 1430 (92.6%) 1273 (82.4%)

- No SSI within 48 1330 (98.7%) 1404 (98.2%) 1256 (98.7%)

- SSI within 48 18 (1.3%) 26 (1.8%) 17 (1.3%)

In-person review (moderate-high risk) 197 (12.8%) 115 (7.4%) 272 (17.6%)

- No SSI within 48 158 (80.2%) 84 (73.0%) 232 (85.3%)

- SSI within 48 39 (19.8%) 31 (27.0%) 40 (14.7%)

FTE full-time equivalent, SSI surgical-site infection.
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(NHS Lothian) enrolled between July 2016 to March 2020 (TWIST) and
July 2021 to April 2022 (INROADE). Research Ethics Committee (REC)
approval was received for both TWIST (South-East Scotland: 16/SS/0072),
and INROADE (West of Scotland: 21/WS/0046)), and all patients provided
informed consent to participate. This encompassed use of data for sec-
ondary analysis.

The methods and primary findings, and the principal components of
the digital remote postoperative woundmonitoring intervention have been
previously described in the original studies18,19. The intervention was con-
sistent across both studies, with patients given access to the online platform
throughout the early postoperative period (postoperative day 1–30).
Patientswere able to submit an imageof their surgicalwound(s), and a series
of patient-reported outcomes (PROMs) related to surgical-site infection
(Supplementary Table 3). These PROMs were simple questions used to
establish the presence or absence of signs and symptoms indicative of SSI
according to the patient, with branching questions added in the INROADE
study to also quantify the perceived changes over time of each symptom
(“new onset”, or “worse”, “same”, or “better” compared to the last submis-
sion). These patients were aware that data they submitted may be used for
the purposes ofmachine learning but that this would have no impact on the
clinical recommendations receivedwithin the studies; therefore, no blinding
to outcomes or other predictors was deemed necessary.

Outcomes of interest
Prediction of two outcomes of interest were explored in independent
modelling frameworks. Firstly, suspected SSI on remote clinical triage – yes
(moderate- or high risk of SSI) or no (low risk of SSI). This was intended to
reduce the burden of clinical triage of patient responses. Each individual
submission was reviewed by a qualified clinician trained to recognise
surgical-site infection. The evidence of SSI on patient-reported symptoms
and wound images was classified independently and then overall as either:
(1) that there was no clear evidence of SSI present (low risk), but with
recommendation to attend healthcare services or submit a further form if
ongoing concerns; (2) possible evidence of SSI (moderate-risk), with

recommendation to attend community healthcare services for clinical
review; or (3) probable evidence of SSI (high risk), with recommendation to
attend emergency services for clinical review. Secondly, the confirmed
diagnosis of SSI on in-person clinician reviewwithin 48 h of the submission
of the response - yes orno.This sought todeterminewhether evidence of SSI
can be identified de novo, benchmarked against clinical triage of patient
responses. Diagnosis of SSI was recorded according to the Centers for
Disease Control and Prevention (CDC) definition20 within the 30-day
postoperative period, and was determined using a combination of: (1) the
telephone follow-up of the patient; (2) electronic patient record review; and
(3) review of wound logs which documented any wound reviews in the
community (returnable in a pre-paid envelope).

Statistical analysis
All statistical analyses were performed in R Studio version 4.1.1 (R Foun-
dation for Statistical Computing, Vienna, Austria), with packages including
tidyverse, keras, finalfit, and predictr39. Numerical datawere summarized as
mean (standard deviation) or median (interquartile range) based on visual
and statistical evaluation for normality, with appropriate tests for para-
metric or non-parametric data performed. Categorical data were cross-
tabulated, and tested using χ2 or Fisher’s exact tests.

Neural network modelling
Model development was conducted separately for patient-reported symp-
toms and wound images within the INROADE dataset using neural net-
work frameworks (Fig. 4a). These data were randomly split into
development (training) and internal validation (testing) datasets in a 4:1
ratio, with repeat responses clustered by patient to ensure no data leakage
and stratified by outcome to achieve balanced event rates between datasets.
The trainedmodels output a probability of the occurrence of the outcomeof
interest between 0 and 1 (binary classification). All models were subse-
quently externally validated within the TWIST dataset.Model performance
was compared using the area under the receiver operating characteristic
curve (AUC) and prognostic accuracy summary statistics (sensitivity,

Fig. 4 | Data flowcharts.Depicts the flow of data throughout the analysis. This is shown for (a) all patients in both the TWIST and INROADE studies, (b)all components of
the multimodal neural network framework.
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specificity, positive predictive value [PPV], and negative predictive value
[NPV]). An AUC of 0.5–0.59 was considered to be “poor”, 0.6–0.69 was
considered to be “moderate”, 0.7–0.79 “good” and ≥0.8 “excellent” model
discrimination40.

Due to the multimodal nature of the patient response data, three
different neural network modelling approaches were explored and com-
pared (Fig. 4b). Firstly, MLP models were developed to predict outcome
based on patient-reported symptoms41. All PROMs data were categorical,
and so were pre-processed using one-hot encoding (dummification) to
allow efficient modelling and reduce model bias. Subsequently, these data
were normalised to have a mean of zero (centred) and standard deviation
of one (scaled). Missing data due to partial completion of PROMs were
assumed to have the absence of the respective symptoms given this would
be the assumption in clinical practice. These trainingdatawere supplied to
the sequential MLP model as a 2 dimensional array (0, 8). The perfor-
mance of this MLP modelling approach was compared against multi-
variable logistic regression utilising the same input variables. Secondly,
CNN models were developed to predict outcome using wound images.
These are a form of deep learning which have proven adept at classifying
images based on the presence or absence of particular features13. Each
image submitted by patients across both studies were manually reviewed,
and those without a visible wound were discarded. Image data pre-
processing was conducted according to standard practice, with all images
in colour and scaled to a standardised 256 × 256 pixels13. Augmentation
was then applied to training data in order to further expand the image
dataset and so improve the robustness and generalisability of the sub-
sequent model13. This included transformations such as translation,
rotation, scaling, and flipping, and avoided shape deformation to preserve
wound characteristics. These training data were supplied to the CNN
model as a 4 dimensional array (0, 256, 256, 3) which utilised transfer
learning from an open-access image classification model to exploit the
knowledge gained42. In pilot work, we compared VGG19, VGG16,
InceptionV3, and ResNet50. VGG19 had the best discrimination with a
slightly higher computational cost. This strategy improves generalization
as it exploits features extracted in more general settings and reduces
chances of overfitting42. The layers of the VGG19model were unfrozen at
the 3rd pooling stage to allow fine-tuning. The CNN models were fine
tuned for 30 epochs (optimised using root mean square propagation in
batch sizes of 10) with early stopping based on training loss (binary cross-
entropy) after every ten steps and a patience of ten. Class activation
heatmapswere also derived from the images processed by the algorithm13.
This allowed clinical confirmation that the wound features being identi-
fied by the machine learning algorithm were consistent with the known
pathognomonic features of SSI. Finally, late fusion was used to combine
prior models to form a multimodal neural network using the multimodal
data. This allowed incorporation of patient-reported outcomes and
wound imageswithin the same predictive framework, and allowed a single
prediction based on all data contained in a single patient response to be
generated. This approach has been demonstrated to have superior per-
formance to independent models within other contexts43,44.

Simulation of implementation strategies
The proposed use-case for these approaches for automated assessment of
online responses was to reduce the burden of clinical triage (by allowing
online responses without evidence of SSI to be automatically classified as
such). Therefore, the healthcare impact of implementation of automated
assessment within the remote postoperative wound monitoring care path-
waywas explored under different simulated scenarios. Thebaseline scenario
involving full clinical assessment in TWIST and INROADEwas established
using the sensitivity and specificity for confirmed SSI diagnosis within 48 h
(Supplementary Fig. 2a). Subsequently, two scenarios were simulated based
on integration of multimodal neural network assessment: “Hybrid assess-
ment” involving partial automation to rule-out low risk wounds prior to
clinical review (Supplementary Fig. 2b), and fully automated assessment
(Supplementary Fig. 2c). For responses where no image was submitted, the

prediction from the MLP was used. For responses with multiple images
submitted at once, the highest predicted risk was used.

Outcomes assessed across all scenarios included the number of
responses reviewed by staff, the overall diagnostic accuracy, the failure rate
(the proportion of patients stratified to the low risk group who are then
diagnosed with SSI within 48 h [1 – NPV]), and the number of recom-
mended in-person reviews. For the purposes of each scenario, clinical
assessment of each response was estimated to take 2min, whereas auto-
mated assessment was assumed to be real-time (0min). The staff-time
required to deliver was standardised as the annual FTE per 1000 patient
caseload for clinician triage. This was calculated assuming that full timewas
37.5 h per week45 (1950 h over 52 weeks per year). This was then scaled
according to the number of patients and duration of the INROADE study
due to this featuring the more intensive follow-up. Finally, a sensitivity
analysis was conducted to vary the threshold for the probability of SSI cut-
off for in-person review, and explore effect on the staff-time to deliver and
the failure rate.

Data availability
Sharing of patient generated data collected as part of this research is
restricted to instances with data access agreements with clear terms which
protect confidentiality and intellectual property. However, in line with
transparency and reproducibility in scientific research, the code for results
presented and deidentified participant data are available on reasonable
request from the corresponding author.

Code availability
The code generated andused during the current study are available from the
corresponding author on reasonable request.
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