Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/26308
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMorley, Peteren_UK
dc.contributor.authorDonoghue, Daniel N Men_UK
dc.contributor.authorChen, Jan-Changen_UK
dc.contributor.authorJump, Alistairen_UK
dc.date.accessioned2018-04-07T04:16:56Z-
dc.date.available2018-04-07T04:16:56Z-
dc.date.issued2018-01en_UK
dc.identifier.urihttp://hdl.handle.net/1893/26308-
dc.description.abstractSpecies range shifts have been well studied in light of rising global temperatures and the role climate plays in restricting species distribution. In mountain regions, global trends show upward elevational shifts of altitudinal treelines. However, there is significant variation in response between geographic locations driven by climatic and habitat heterogeneity and biotic interactions. Accurate estimation of treeline shifts requires fine-scale patterns of forest structure to be discriminated across mountain ranges. Satellite remote sensing allows detailed information on forest structure to be extrapolated across mountain ranges, however, variation in methodology combined with a lack of information on accuracy and repeatability has led to high uncertainty in the utility of remotely sensed data in studies of mountain treelines. We unite three themes; suitability of remote sensing products, ecological relevance of classifications and effectiveness of the training and validation process in relation to the study of mountain treeline ecotones. We identify needs for further research comparing the utility of different remotely sensed data sets, better characterisation of treeline structure and incorporation of accuracy assessment. Collectively, the improvements we describe will significantly improve the utility of remote sensing by facilitating a more consistent approach to defining geographic variation in treeline structure, improving our ability to link processes from stand to regional scale and the accuracy of range shift assessments. Ultimately, this advance will enable better monitoring of mountain treeline shifts and estimation of the associated to biodiversity and ecosystem function.en_UK
dc.language.isoenen_UK
dc.publisherElsevieren_UK
dc.relationMorley P, Donoghue DNM, Chen J & Jump A (2018) Integrating remote sensing and demography for more efficient and effective assessment of changing mountain forest distribution. Ecological Informatics, 43, pp. 106-115. https://doi.org/10.1016/j.ecoinf.2017.12.002en_UK
dc.rights© 2017 The Authors. Published by Elsevier B.V. Published under a Creative Commons Attribution Licence (https://creativecommons.org/licenses/by/4.0/)en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectTreelineen_UK
dc.subjectMonitoringen_UK
dc.subjectRegionalen_UK
dc.subjectAccuracyen_UK
dc.subjectBiogeographyen_UK
dc.titleIntegrating remote sensing and demography for more efficient and effective assessment of changing mountain forest distributionen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1016/j.ecoinf.2017.12.002en_UK
dc.citation.jtitleEcological Informaticsen_UK
dc.citation.issn1574-9541en_UK
dc.citation.volume43en_UK
dc.citation.spage106en_UK
dc.citation.epage115en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.author.emailp.j.morley@stir.ac.uken_UK
dc.citation.date07/12/2017en_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.contributor.affiliationDurham Universityen_UK
dc.contributor.affiliationNational Pingtung University of Science and Technologyen_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.identifier.isiWOS:000424721000010en_UK
dc.identifier.scopusid2-s2.0-85037713570en_UK
dc.identifier.wtid508860en_UK
dc.contributor.orcid0000-0002-7503-2520en_UK
dc.contributor.orcid0000-0002-2167-6451en_UK
dc.date.accepted2017-12-06en_UK
dcterms.dateAccepted2017-12-06en_UK
dc.date.filedepositdate2017-12-07en_UK
rioxxterms.apcpaiden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorMorley, Peter|0000-0002-7503-2520en_UK
local.rioxx.authorDonoghue, Daniel N M|en_UK
local.rioxx.authorChen, Jan-Chang|en_UK
local.rioxx.authorJump, Alistair|0000-0002-2167-6451en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2017-12-07en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2017-12-07|en_UK
local.rioxx.filename1-s2.0-S1574954117300791-main.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1574-9541en_UK
Appears in Collections:Biological and Environmental Sciences Journal Articles

Files in This Item:
File Description SizeFormat 
1-s2.0-S1574954117300791-main.pdfFulltext - Published Version870.32 kBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.