Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/30028
Appears in Collections:Aquaculture Journal Articles
Peer Review Status: Refereed
Title: Enhanced micronutrient supplementation in low marine diets reduced vertebral malformation in diploid and triploid Atlantic salmon (Salmo salar) parr, and increased vertebral expression of bone biomarker genes in diploids
Author(s): Vera, Luisa M
Lock, Erik-Jan
Hamre, Kristen
Migaud, Herve
Leeming, Daniel
Tocher, Douglas R
Taylor, John F
Contact Email: j.f.taylor@stir.ac.uk
Keywords: Fishmeal
fish oil
minerals
plant proteins
ploidy
skeletal deformity
vegetable oil
vitamins
Issue Date: Nov-2019
Date Deposited: 26-Aug-2019
Citation: Vera LM, Lock E, Hamre K, Migaud H, Leeming D, Tocher DR & Taylor JF (2019) Enhanced micronutrient supplementation in low marine diets reduced vertebral malformation in diploid and triploid Atlantic salmon (Salmo salar) parr, and increased vertebral expression of bone biomarker genes in diploids. Comparative Biochemistry and Physiology - Part B: Biochemistry and Molecular Biology, 237, Art. No.: 110327. https://doi.org/10.1016/j.cbpb.2019.110327
Abstract: Highlights The use of plant ingredients affects the level of micronutrients in salmon feeds. Increased micronutrient supplementation reduced the prevalence of spinal deformity. Triploid salmon showed higher prevalence of malformation. In diploids, the expression of bone genes was affected by micronutrient levels. Micronutrients should be supplemented when feeding salmon low marine diets. Previously we showed that, for optimum growth, micronutrient levels should be supplemented above current National Research Council (2011) recommendations for Atlantic salmon when they are fed diets formulated with low levels of marine ingredients. In the present study, the impact of graded levels (100, 200, 400%) of a micronutrient package (NP) on vertebral deformities and bone gene expression were determined in diploid and triploid salmon parr fed low marine diets. The prevalence of radiologically detectable spinal deformities decreased with increasing micronutrient supplementation in both ploidy. On average, triploids had a higher incidence of spinal deformity than diploids within a given diet. Micronutrient supplementation particularly reduced prevalence of fusion deformities in diploids and compression and reduced spacing deformities in triploids. Prevalence of affected vertebrae within each spinal region (cranial, caudal, tail and tail fin) varied significantly between diet and ploidy, and there was interaction. Prevalence of deformities was greatest in the caudal region of triploids and the impact of graded micronutrient supplementation in reducing deformities also greatest in triploids. Diet affected vertebral morphology with length:height (L:H) ratio generally increasing with level of micronutrient supplementation in both ploidy with no difference between ploidy. Increased dietary micronutrients level in diploid salmon increased the vertebral expression of several bone biomarker genes including bone morphogenetic protein 2 (bmp2), osteocalcin (ostcn), alkaline phosphatase (alp), matrix metallopeptidase 13 (mmp13), osteopontin (opn) and insulin-like growth factor 1 receptor (igf1r). In contrast, although some genes showed similar trends in triploids, vertebral gene expression was not significantly affected by dietary micronutrients level. The study confirmed earlier indications that dietary micronutrient levels should be increased in salmon fed diets with low marine ingredients and that there are differences in nutritional requirements between ploidies.
DOI Link: 10.1016/j.cbpb.2019.110327
Rights: This item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. Accepted refereed manuscript of: Vera LM, Lock E, Hamre K, Migaud H, Leeming D, Tocher DR & Taylor JF (2019) Enhanced micronutrient supplementation in low marine diets reduced vertebral malformation in diploid and triploid Atlantic salmon (Salmo salar) parr, and increased vertebral expression of bone biomarker genes in diploids. Comparative Biochemistry and Physiology - Part B: Biochemistry and Molecular Biology, 237, Art. No.: 110327. DOI: https://doi.org/10.1016/j.cbpb.2019.110327 © 2019, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/
Licence URL(s): http://creativecommons.org/licenses/by-nc-nd/4.0/

Files in This Item:
File Description SizeFormat 
Vera-EtAl-CompBiochem_Physiol-2019-Enhanced-micronutrient-supplementation-in-low-marine-diets.pdfFulltext - Accepted Version1.32 MBAdobe PDFView/Open



This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.