Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/30495
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Odam, Neil | en_UK |
dc.contributor.author | de Vries, Frans P | en_UK |
dc.date.accessioned | 2019-11-22T16:49:01Z | - |
dc.date.available | 2019-11-22T16:49:01Z | - |
dc.date.issued | 2020-01-01 | en_UK |
dc.identifier.other | 104594 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/30495 | - |
dc.description.abstract | Learning curves are frequently cited to justify the subsidization of new technologies to facilitate market competitiveness. The main literature has focused on improving the specification of the basic learning curve model by augmenting it to control for technological development measured by public R&D expenditures. In addition to employing R&D expenditures, the purpose of this paper is to assess the robustness of an augmented multi-factor learning curve model by estimating learning rates in a panel framework utilising patent data on relevant wind power technologies in Germany, Denmark, Spain and the UK. Results indicate that both innovation proxies are qualitatively identical and generate consistent learning estimates. The paper also aims at exploring the presence of unit roots in learning curves and alerts to the possibility of spurious estimations. Renewable energy policy guided by learning curve estimates should therefore be implemented with caution. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | Elsevier BV | en_UK |
dc.relation | Odam N & de Vries FP (2020) Innovation Modelling and Multi-Factor Learning in Wind Energy Technology. Energy Economics, 85, Art. No.: 104594. https://doi.org/10.1016/j.eneco.2019.104594 | en_UK |
dc.rights | This item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. Accepted refereed manuscript of: Odam N & de Vries FP (2020) Innovation Modelling and Multi-Factor Learning in Wind Energy Technology. Energy Economics, 85, Art. No.: 104594. DOI: https://doi.org/10.1016/j.eneco.2019.104594 © 2019, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ | en_UK |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | en_UK |
dc.subject | Technical change | en_UK |
dc.subject | R&D | en_UK |
dc.subject | Learning curves | en_UK |
dc.subject | Renewables | en_UK |
dc.subject | Patents | en_UK |
dc.subject | Knowledge stock | en_UK |
dc.subject | Unit roots | en_UK |
dc.title | Innovation Modelling and Multi-Factor Learning in Wind Energy Technology | en_UK |
dc.type | Journal Article | en_UK |
dc.rights.embargodate | 2021-05-22 | en_UK |
dc.rights.embargoreason | [Innovation_Learning_Wind_Energy.pdf] Publisher requires embargo of 18 months after formal publication. | en_UK |
dc.identifier.doi | 10.1016/j.eneco.2019.104594 | en_UK |
dc.citation.jtitle | Energy Economics | en_UK |
dc.citation.issn | 0140-9883 | en_UK |
dc.citation.volume | 85 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.citation.peerreviewed | Refereed | en_UK |
dc.type.status | AM - Accepted Manuscript | en_UK |
dc.contributor.funder | Economic and Social Research Council | en_UK |
dc.author.email | f.p.devries@stir.ac.uk | en_UK |
dc.citation.date | 21/11/2019 | en_UK |
dc.contributor.affiliation | Economics | en_UK |
dc.identifier.isi | WOS:000527274000021 | en_UK |
dc.identifier.scopusid | 2-s2.0-85076023709 | en_UK |
dc.identifier.wtid | 1485637 | en_UK |
dc.contributor.orcid | 0000-0003-0462-5035 | en_UK |
dc.date.accepted | 2019-11-17 | en_UK |
dcterms.dateAccepted | 2019-11-17 | en_UK |
dc.date.filedepositdate | 2019-11-22 | en_UK |
rioxxterms.apc | not required | en_UK |
rioxxterms.type | Journal Article/Review | en_UK |
rioxxterms.version | AM | en_UK |
local.rioxx.author | Odam, Neil| | en_UK |
local.rioxx.author | de Vries, Frans P|0000-0003-0462-5035 | en_UK |
local.rioxx.project | Project ID unknown|Economic and Social Research Council|http://dx.doi.org/10.13039/501100000269 | en_UK |
local.rioxx.freetoreaddate | 2021-05-22 | en_UK |
local.rioxx.licence | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2021-05-21 | en_UK |
local.rioxx.licence | http://creativecommons.org/licenses/by-nc-nd/4.0/|2021-05-22| | en_UK |
local.rioxx.filename | Innovation_Learning_Wind_Energy.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 0140-9883 | en_UK |
Appears in Collections: | Economics Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Innovation_Learning_Wind_Energy.pdf | Fulltext - Accepted Version | 412.33 kB | Adobe PDF | View/Open |
This item is protected by original copyright |
A file in this item is licensed under a Creative Commons License
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.