Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/33973
Appears in Collections:Psychology Journal Articles
Peer Review Status: Refereed
Title: Coupling of pupil- and neuronal population dynamics reveals diverse influences of arousal on cortical processing
Author(s): Pfeffer, Thomas
Keitel, Christian
Kluger, Daniel S
Keitel, Anne
Russmann, Alena
Thut, Gregor
Donner, Tobias H
Gross, Joachim
Keywords: General Immunology and Microbiology
General Biochemistry, Genetics and Molecular Biology
General Medicine
General Neuroscience
Issue Date: 2022
Date Deposited: 25-Feb-2022
Citation: Pfeffer T, Keitel C, Kluger DS, Keitel A, Russmann A, Thut G, Donner TH & Gross J (2022) Coupling of pupil- and neuronal population dynamics reveals diverse influences of arousal on cortical processing. eLife, 11, Art. No.: e71890. https://doi.org/10.7554/elife.71890
Abstract: Fluctuations in arousal, controlled by subcortical neuromodulatory systems, continuously shape cortical state, with profound consequences for information processing. Yet, how arousal signals influence cortical population activity in detail has so far only been characterized for a few selected brain regions. Traditional accounts conceptualize arousal as a homogeneous modulator of neural population activity across the cerebral cortex. Recent insights, however, point to a higher specificity of arousal effects on different components of neural activity and across cortical regions. Here, we provide a comprehensive account of the relationships between fluctuations in arousal and neuronal population activity across the human brain. Exploiting the established link between pupil size and central arousal systems, we performed concurrent magnetoencephalographic (MEG) and pupillographic recordings in a large number of participants, pooled across three laboratories. We found a cascade of effects relative to the peak timing of spontaneous pupil dilations: Decreases in low-frequency (2-8 Hz) activity in temporal and lateral frontal cortex, followed by increased high-frequency (>64 Hz) activity in mid-frontal regions, followed by monotonic and inverted U relationships with intermediate frequency-range activity (8-32 Hz) in occipito-parietal regions. Pupil-linked arousal also coincided with widespread changes in the structure of the aperiodic component of cortical population activity, indicative of changes in the excitation-inhibition balance in underlying microcircuits. Our results provide a novel basis for studying the arousal modulation of cognitive computations in cortical circuits.
DOI Link: 10.7554/elife.71890
Rights: © 2022, Pfeffer et al. This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use and redistribution provided that the original author and source are credited.
Licence URL(s): http://creativecommons.org/licenses/by/4.0/

Files in This Item:
File Description SizeFormat 
elife-71890-v2.pdfFulltext - Published Version2.39 MBAdobe PDFView/Open



This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.