Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/34982
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSmillie, Zeinaben_UK
dc.contributor.authorDemyanov, Vasilyen_UK
dc.contributor.authorMcKinley, Jenniferen_UK
dc.contributor.authorCooper, Marken_UK
dc.date.accessioned2023-04-13T00:00:28Z-
dc.date.available2023-04-13T00:00:28Z-
dc.identifier.urihttp://hdl.handle.net/1893/34982-
dc.description.abstractUsing pattern classification algorithms can help recognise and predict patterns in large and complex multivariate datasets. Utilising competitive learning, self-organising maps (SOMs) are known unsupervised classification tools that are considered very useful in pattern classification and recognition. This technique is based on the principles of vector quantification of similarities and clustering in a high-dimensional space, where the method can handle the analysis and visualization of high-dimensional data. The tool is ideal for analysing a complex combination of categorical and continuous spatial variables, with particular applications to geological features. In this paper, we employ the tool to predict geological features based on airborne geophysical data acquired through the Tellus project in Northern Ireland. SOMs are applied through 8 experiments (iterations), incorporating the radiometric data in combination with geological features, including elevation, slope angle, terrain ruggedness (TRI), and geochronology. The SOMs proved successful in differentiating contrasting bedrock geology, such as acidic versus mafic igneous rocks, while data clustering over intermediate rocks was not as apparent. The presence of a thick cover of glacial deposits in most of the study area presented a challenge in the data clustering, particularly over the intermediate igneous and sedimentary bedrock types.en_UK
dc.language.isoenen_UK
dc.publisherThe Geological Societyen_UK
dc.relationSmillie Z, Demyanov V, McKinley J & Cooper M (2023) Unsupervised classification applications in enhancing lithological mapping and geological understanding - A case study from Northern Ireland. <i>Journal of the Geological Society</i>.en_UK
dc.rightsThis item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttps://storre.stir.ac.uk/STORREEndUserLicence.pdfen_UK
dc.titleUnsupervised classification applications in enhancing lithological mapping and geological understanding - A case study from Northern Irelanden_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate2026-03-30en_UK
dc.rights.embargoreason[GeolSoc_Template_Tellus_Paper_2023.pdf] Publisher requires embargo of 12 months after publication.en_UK
dc.citation.jtitleJournal of the Geological Societyen_UK
dc.citation.issn2041-479Xen_UK
dc.citation.issn0016-7649en_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.author.emailzeinab.smillie@stir.ac.uken_UK
dc.description.notesOutput Status: Forthcomingen_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.contributor.affiliationHeriot-Watt Universityen_UK
dc.contributor.affiliationHeriot-Watt Universityen_UK
dc.contributor.affiliationGeological Survey of Northern Irelanden_UK
dc.identifier.wtid1894783en_UK
dc.contributor.orcid0000-0002-0089-1793en_UK
dc.date.accepted2023-03-30en_UK
dcterms.dateAccepted2023-03-30en_UK
dc.date.filedepositdate2023-04-01en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.versionAMen_UK
local.rioxx.authorSmillie, Zeinab|0000-0002-0089-1793en_UK
local.rioxx.authorDemyanov, Vasily|en_UK
local.rioxx.authorMcKinley, Jennifer|en_UK
local.rioxx.authorCooper, Mark|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2026-03-30en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2026-03-29en_UK
local.rioxx.licencehttps://storre.stir.ac.uk/STORREEndUserLicence.pdf|2026-03-30|en_UK
local.rioxx.filenameGeolSoc_Template_Tellus_Paper_2023.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source2041-479Xen_UK
Appears in Collections:Biological and Environmental Sciences Journal Articles

Files in This Item:
File Description SizeFormat 
GeolSoc_Template_Tellus_Paper_2023.pdfFulltext - Accepted Version4.8 MBAdobe PDFUnder Embargo until 2026-03-30    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.