Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/36451
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Crawford, Anna J | en_UK |
dc.contributor.author | Mueller, Derek | en_UK |
dc.contributor.author | Crocker, Gregory | en_UK |
dc.contributor.author | Mingo, Laurent | en_UK |
dc.contributor.author | Desjardins, Luc | en_UK |
dc.contributor.author | Dumont, Dany | en_UK |
dc.contributor.author | Babin, Marcel | en_UK |
dc.date.accessioned | 2024-11-08T01:03:08Z | - |
dc.date.available | 2024-11-08T01:03:08Z | - |
dc.date.issued | 2020-03-24 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/36451 | - |
dc.description.abstract | A 130 km2 tabular iceberg calved from Petermann Glacier in northwestern Greenland on 5 August 2012. Subsequent fracturing generated many individual large “ice islands”, including Petermann ice island (PII)-A-1-f, which drifted between Nares Strait and the North Atlantic. Thinning caused by basal and surface ablation increases the likelihood that these ice islands will fracture and disperse further, thereby increasing the risk to marine transport and infrastructure as well as affecting the distribution of freshwater from the polar ice sheets. We use a unique stationary and mobile ice-penetrating radar dataset collected over four campaigns to PII-A-1-f to quantify and contextualize ice island surface and basal ablation rates and calibrate a forced convection basal ablation model. The ice island thinned by 4.7 m over 11 months. The majority of thinning (73 %) resulted from basal ablation, but the volume loss associated with basal ablation was ∼12 times less than that caused by areal reduction (e.g. wave erosion, calving, and fracture). However, localized thinning may have influenced a large fracture event that occurred along a section of ice that was ∼40 m thinner than the remainder of the ice island. The calibration of the basal ablation model, the first known to be conducted with field data, supports assigning the theoretically derived value of 1.2×10−5 m2∕5 s ∘C−1 to the model's bulk heat transfer coefficient with the use of an empirically estimated ice–ocean interface temperature. Overall, this work highlights the value of systematically collecting ice island field data for analyzing deterioration processes, assessing their connections to ice island morphology, and adequately developing models for operational and research purposes. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | Copernicus GmbH | en_UK |
dc.relation | Crawford AJ, Mueller D, Crocker G, Mingo L, Desjardins L, Dumont D & Babin M (2020) Ice island thinning: rates and model calibration with in situ observations from Baffin Bay, Nunavut. <i>The Cryosphere</i>, 14 (3), pp. 1067-1081. https://doi.org/10.5194/tc-14-1067-2020 | en_UK |
dc.rights | This work is distributed under the Creative Commons Attribution 4.0 License. | en_UK |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en_UK |
dc.subject | Earth-Surface Processes | en_UK |
dc.subject | Water Science and Technology | en_UK |
dc.title | Ice island thinning: rates and model calibration with in situ observations from Baffin Bay, Nunavut | en_UK |
dc.type | Journal Article | en_UK |
dc.identifier.doi | 10.5194/tc-14-1067-2020 | en_UK |
dc.citation.jtitle | Cryosphere | en_UK |
dc.citation.issn | 1994-0424 | en_UK |
dc.citation.volume | 14 | en_UK |
dc.citation.issue | 3 | en_UK |
dc.citation.spage | 1067 | en_UK |
dc.citation.epage | 1081 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.citation.peerreviewed | Refereed | en_UK |
dc.type.status | VoR - Version of Record | en_UK |
dc.contributor.funder | Environment and Climate Change Canada | en_UK |
dc.author.email | anna.crawford@stir.ac.uk | en_UK |
dc.citation.date | 24/03/2020 | en_UK |
dc.contributor.affiliation | Biological and Environmental Sciences | en_UK |
dc.contributor.affiliation | Carleton University | en_UK |
dc.contributor.affiliation | Carleton University | en_UK |
dc.contributor.affiliation | Blue System Intergration Ltd | en_UK |
dc.contributor.affiliation | Carleton University | en_UK |
dc.contributor.affiliation | University of Quebec | en_UK |
dc.contributor.affiliation | Université Laval | en_UK |
dc.identifier.isi | WOS:000521943800001 | en_UK |
dc.identifier.scopusid | 2-s2.0-85082709046 | en_UK |
dc.identifier.wtid | 1998304 | en_UK |
dc.contributor.orcid | 0000-0003-1974-319X | en_UK |
dc.contributor.orcid | 0000-0001-7863-1257 | en_UK |
dc.contributor.orcid | 0000-0003-4107-1799 | en_UK |
dc.date.accepted | 2020-02-07 | en_UK |
dcterms.dateAccepted | 2020-02-07 | en_UK |
dc.date.filedepositdate | 2024-11-07 | en_UK |
rioxxterms.type | Journal Article/Review | en_UK |
rioxxterms.version | VoR | en_UK |
local.rioxx.author | Crawford, Anna J| | en_UK |
local.rioxx.author | Mueller, Derek|0000-0003-1974-319X | en_UK |
local.rioxx.author | Crocker, Gregory| | en_UK |
local.rioxx.author | Mingo, Laurent|0000-0001-7863-1257 | en_UK |
local.rioxx.author | Desjardins, Luc| | en_UK |
local.rioxx.author | Dumont, Dany|0000-0003-4107-1799 | en_UK |
local.rioxx.author | Babin, Marcel| | en_UK |
local.rioxx.project | n/a|Environment and Climate Change Canada| | en_UK |
local.rioxx.freetoreaddate | 2024-11-07 | en_UK |
local.rioxx.licence | http://creativecommons.org/licenses/by/4.0/|2024-11-07| | en_UK |
local.rioxx.filename | tc-14-1067-2020.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 1994-0424 | en_UK |
Appears in Collections: | Biological and Environmental Sciences Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
tc-14-1067-2020.pdf | Fulltext - Published Version | 11.81 MB | Adobe PDF | View/Open |
This item is protected by original copyright |
A file in this item is licensed under a Creative Commons License
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.