Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/36518
Appears in Collections:Biological and Environmental Sciences Journal Articles
Peer Review Status: Refereed
Title: No future growth enhancement expected at the northern edge for European beech due to continued water limitation
Author(s): Klesse, Stefan
Peters, Richard L
Alfaro-Sánchez, Raquel
Badeau, Vincent
Baittinger, Claudia
Battipaglia, Giovanna
Bert, Didier
Biondi, Franco
Bosela, Michal
Budeanu, Marius
Čada, Vojtěch
Julio Camarero, J
Cavin, Liam
Claessens, Hugues
Jump, Alistair S
Contact Email: a.s.jump@stir.ac.uk
Keywords: climate change
climate sensitivity
drought
Fagus sylvatica
growth projection
leading edge
trailing edge
tree rings
Issue Date: Oct-2024
Date Deposited: 3-Oct-2024
Citation: Klesse S, Peters RL, Alfaro-Sánchez R, Badeau V, Baittinger C, Battipaglia G, Bert D, Biondi F, Bosela M, Budeanu M, Čada V, Julio Camarero J, Cavin L, Claessens H & Jump AS (2024) No future growth enhancement expected at the northern edge for European beech due to continued water limitation. <i>Global Change Biology</i>, 30 (10), Art. No.: e17546. https://doi.org/10.1111/gcb.17546
Abstract: With ongoing global warming, increasing water deficits promote physiological stress on forest ecosystems with negative impacts on tree growth, vitality, and survival. How individual tree species will react to increased drought stress is therefore a key research question to address for carbon accounting and the development of climate change mitigation strategies. Recent tree-ring studies have shown that trees at higher latitudes will benefit from warmer temperatures, yet this is likely highly species-dependent and less well-known for more temperate tree species. Using a unique pan-European tree-ring network of 26,430 European beech (Fagus sylvatica L.) trees from 2,118 sites, we applied a linear mixed-effects modeling framework to i) explain variation in climate-dependent growth and ii) project growth for the near future (2021-2050) across the entire distribution of beech. We modeled the spatial pattern of radial growth responses to annually varying climate as a function of mean climate conditions (mean annual temperature, mean annual climatic water balance, continentality). Over the calibration period (1952-2011) the model yielded high regional explanatory power (R2 = 0.38-0.72). Considering a moderate climate-change scenario (CMIP6 SSP2-4.5), beech growth is projected to decrease in the future across most of its distribution range. In particular, projected growth decreases by 12-18% (interquartile range) in northwestern Central Europe and by 11-21% in the Mediterranean region. In contrast, climate-driven growth increases are limited to around 13% of the current occurrence, where historical mean annual temperature was below ~6°C. More specifically, the model predicts a 3-24% growth increase in the high-elevation clusters of the Alps and Carpathian Arc. Notably, we find little potential for future growth increases (-10 to +2%) at the poleward leading edge in southern Scandinavia. Because in this region beech growth is found to be primarily water-limited, a northward shift in its distributional range will be constrained by water availability.
DOI Link: 10.1111/gcb.17546
Rights: © 2024 The Author(s). Global Change Biology published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
Notes: Additional authors: Ana-Maria Cretan, Katarina Čufar, Martin de Luis, Isabel Dorado-Liñán, Choimaa Dulamsuren, Josep Maria Espelta, Balazs Garamszegi, Michael Grabner, Jozica Gricar, Andrew Hacket-Pain, Jon Kehlet Hansen, Claudia Hartl, Andrea Hevia, Martina Hobi, Pavel Janda, Jakub Kašpar, Marko Kazimirović, Srdjan Keren, Juergen Kreyling, Alexander Land, Nicolas Latte, François Lebourgeois, Christoph Leuschner, Mathieu Lévesque, Luis A. Longares, Edurne Martinez del Castillo, Annette Menzel, Maks Merela, Martin Mikoláš, Renzo Motta, Lena Muffler, Anna Neycken, Paola Nola, Momchil Panayotov, Any Mary Petritan, Ion Catalin Petritan, Ionel Popa, Peter Prislan, Tom Levanič, Catalin-Constantin Roibu, Álvaro Rubio-Cuadrado, Raúl Sánchez-Salguero, Pavel Šamonil, Branko Stajić, Miroslav Svoboda, Roberto Tognetti, Elvin Toromani, Volodymyr Trotsiuk, Ernst van der Maaten, Marieke van der Maaten-Theunissen, Astrid Vannoppen, Ivana Vašíčková, Georg von Arx, Martin Wilmking, Robert Weigel, Tzvetan Zlatanov, Christian Zang, Allan Buras
Licence URL(s): http://creativecommons.org/licenses/by-nc/4.0/

Files in This Item:
File Description SizeFormat 
Global Change Biology - 2024 - Klesse - No Future Growth Enhancement Expected at the Northern Edge for European Beech due.pdfFulltext - Published Version8 MBAdobe PDFView/Open



This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.