Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/36702
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBhattacharyay, Shubbayuen_UK
dc.contributor.authorCaruso, Pier Francescoen_UK
dc.contributor.authorÅkerlund, Ceciliaen_UK
dc.contributor.authorWilson, Lindsayen_UK
dc.contributor.authorStevens, Robert Den_UK
dc.contributor.authorMenon, David Ken_UK
dc.contributor.authorSteyerberg, Ewout Wen_UK
dc.contributor.authorNelson, David Wen_UK
dc.contributor.authorErcole, Arien_UK
dc.date.accessioned2025-03-08T01:14:53Z-
dc.date.available2025-03-08T01:14:53Z-
dc.date.issued2023en_UK
dc.identifier.other154en_UK
dc.identifier.urihttp://hdl.handle.net/1893/36702-
dc.description.abstractExisting methods to characterise the evolving condition of traumatic brain injury (TBI) patients in the intensive care unit (ICU) do not capture the context necessary for individualising treatment. Here, we integrate all heterogenous data stored in medical records (1166 pre-ICU and ICU variables) to model the individualised contribution of clinical course to 6-month functional outcome on the Glasgow Outcome Scale -Extended (GOSE). On a prospective cohort (n = 1550, 65 centres) of TBI patients, we train recurrent neural network models to map a token-embedded time series representation of all variables (including missing values) to an ordinal GOSE prognosis every 2 h. The full range of variables explains up to 52% (95% CI: 50-54%) of the ordinal variance in functional outcome. Up to 91% (95% CI: 90-91%) of this explanation is derived from pre-ICU and admission information (i.e., static variables). Information collected in the ICU (i.e., dynamic variables) increases explanation (by up to 5% [95% CI: 4-6%]), though not enough to counter poorer overall performance in longer-stay (>5.75 days) patients. Highest-contributing variables include physician-based prognoses, CT features, and markers of neurological function. Whilst static information currently accounts for the majority of functional outcome explanation after TBI, data-driven analysis highlights investigative avenues to improve the dynamic characterisation of longer-stay patients. Moreover, our modelling strategy proves useful for converting large patient records into interpretable time series with missing data integration and minimal processing.en_UK
dc.language.isoenen_UK
dc.publisherNature Researchen_UK
dc.relationBhattacharyay S, Caruso PF, Åkerlund C, Wilson L, Stevens RD, Menon DK, Steyerberg EW, Nelson DW & Ercole A (2023) Mining the contribution of intensive care clinical course to outcome after traumatic brain injury. <i>npj Digital Medicine</i>, 6, Art. No.: 154. https://doi.org/10.1038/s41746-023-00895-8en_UK
dc.rightsThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectBrain injuriesen_UK
dc.subjectComputational scienceen_UK
dc.subjectData miningen_UK
dc.subjectPrognostic markersen_UK
dc.titleMining the contribution of intensive care clinical course to outcome after traumatic brain injuryen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1038/s41746-023-00895-8en_UK
dc.identifier.pmid37604980en_UK
dc.citation.jtitlenpj Digital Medicineen_UK
dc.citation.issn2398-6352en_UK
dc.citation.issn2398-6352en_UK
dc.citation.volume6en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderEuropean Commission (Horizon 2020)en_UK
dc.author.emaill.wilson@stir.ac.uken_UK
dc.citation.date21/08/2023en_UK
dc.contributor.affiliationUniversity of Cambridgeen_UK
dc.contributor.affiliationUniversity of Cambridgeen_UK
dc.contributor.affiliationKarolinska Instituteten_UK
dc.contributor.affiliationPsychologyen_UK
dc.contributor.affiliationJohns Hopkins Universityen_UK
dc.contributor.affiliationUniversity of Cambridgeen_UK
dc.contributor.affiliationLeiden University Medical Centeren_UK
dc.contributor.affiliationKarolinska Instituteten_UK
dc.contributor.affiliationUniversity of Cambridgeen_UK
dc.identifier.isiWOS:001052808800002en_UK
dc.identifier.scopusid2-s2.0-85168424166en_UK
dc.identifier.wtid2073318en_UK
dc.contributor.orcid0000-0003-4113-2328en_UK
dc.date.accepted2023-08-01en_UK
dcterms.dateAccepted2023-08-01en_UK
dc.date.filedepositdate2024-11-20en_UK
dc.relation.funderprojectCollaborative European NeuroTrauma Effectiveness Research in TBIen_UK
dc.relation.funderrefGrant Agreement No 602150-2en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorBhattacharyay, Shubbayu|en_UK
local.rioxx.authorCaruso, Pier Francesco|en_UK
local.rioxx.authorÅkerlund, Cecilia|en_UK
local.rioxx.authorWilson, Lindsay|0000-0003-4113-2328en_UK
local.rioxx.authorStevens, Robert D|en_UK
local.rioxx.authorMenon, David K|en_UK
local.rioxx.authorSteyerberg, Ewout W|en_UK
local.rioxx.authorNelson, David W|en_UK
local.rioxx.authorErcole, Ari|en_UK
local.rioxx.projectGrant Agreement No 602150-2|European Commission (Horizon 2020)|en_UK
local.rioxx.freetoreaddate2024-12-13en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2024-12-13|en_UK
local.rioxx.filenameBhattacharyay et al 2023 Mining the contribution of intensive care clinical course.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source2398-6352en_UK
Appears in Collections:Psychology Journal Articles

Files in This Item:
File Description SizeFormat 
Bhattacharyay et al 2023 Mining the contribution of intensive care clinical course.pdfFulltext - Published Version4.57 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.