Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/36808
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWhite, Solomonen_UK
dc.contributor.authorSilva, Tiagoen_UK
dc.contributor.authorAmoudry, Laurent Oen_UK
dc.contributor.authorSpyrakos, Evangelosen_UK
dc.contributor.authorMartin, Adrienen_UK
dc.contributor.authorMedina-Lopez, Encarnien_UK
dc.date.accessioned2025-03-11T01:30:43Z-
dc.date.available2025-03-11T01:30:43Z-
dc.date.issued2024-12-04en_UK
dc.identifier.urihttp://hdl.handle.net/1893/36808-
dc.description.abstractUnderstanding and monitoring sea surface salinity (SSS) and temperature (SST) is vital for assessing ocean health. Interconnections among the ocean, atmosphere, seabed, and land create a complex environment with diverse spatial and temporal scales. Climate change exacerbates marine heatwaves, eutrophication, and acidification, impacting biodiversity and coastal communities. Satellite-derived ocean colour data provides enhanced spatial coverage and resolution compared to traditional methods, enabling the estimation of SST and SSS. This study presents a methodology for extracting SST and SSS using machine learning algorithms trained with in-situ and multispectral satellite data. A global neural network model was developed, leveraging spectral bands and metadata to predict these parameters. The model incorporated Shapley values to evaluate feature importance, offering insight into the contributions of specific bands and environmental factors. The global model achieved an R2 of 0.83 for temperature and 0.65 for salinity. In the Gulf of Mexico case study, the model demonstrated a root mean square error (RMSE) of 0.83°C for test cases and 1.69°C for validation cases for SST, outperforming traditional methods in dynamic coastal environments. Feature importance analysis identified the critical roles of infrared bands in SST prediction and blue/green colour bands in SSS estimation. This approach addresses the “black box” nature of machine learning models by providing insights into the relative importance of spectral bands and metadata. Key factors such as solar azimuth angle and specific spectral bands were highlighted, demonstrating the potential of machine learning to enhance ocean property estimation, particularly in complex coastal regions.en_UK
dc.language.isoenen_UK
dc.publisherFrontiers Media SAen_UK
dc.relationWhite S, Silva T, Amoudry LO, Spyrakos E, Martin A & Medina-Lopez E (2024) The colours of the ocean using multispectral satellite imagery to estimate sea surface temperature and salinity in global coastal areas, the gulf of Mexico and the UK. <i>Frontiers in Environmental Science</i>, 12. https://doi.org/10.3389/fenvs.2024.1426547en_UK
dc.rightsCopyright © 2024 White, Silva, Amoudry, Spyrakos, Martin and Medina-Lopez. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectmachine learningen_UK
dc.subjectsatellite multispectral imageryen_UK
dc.subjectcoastal oceanographyen_UK
dc.subjectexplainable AIen_UK
dc.subjectocean colouren_UK
dc.subjecttemperatureen_UK
dc.subjectsalinityen_UK
dc.titleThe colours of the ocean using multispectral satellite imagery to estimate sea surface temperature and salinity in global coastal areas, the gulf of Mexico and the UKen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.3389/fenvs.2024.1426547en_UK
dc.citation.jtitleFrontiers in Environmental Scienceen_UK
dc.citation.issn2296-665Xen_UK
dc.citation.volume12en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderUniversity of Edinburghen_UK
dc.author.emailevangelos.spyrakos@stir.ac.uken_UK
dc.citation.date04/12/2024en_UK
dc.contributor.affiliationUniversity of Edinburghen_UK
dc.contributor.affiliationCEFAS - Centre for Environment, Fisheries and Aquaculture Scienceen_UK
dc.contributor.affiliationNational Oceanography Centreen_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.contributor.affiliationNational Oceanography Centreen_UK
dc.contributor.affiliationUniversity of Edinburghen_UK
dc.identifier.isiWOS:001383683200001en_UK
dc.identifier.scopusid2-s2.0-85213004676en_UK
dc.identifier.wtid2078305en_UK
dc.date.accepted2024-10-22en_UK
dcterms.dateAccepted2024-10-22en_UK
dc.date.filedepositdate2025-01-31en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorWhite, Solomon|en_UK
local.rioxx.authorSilva, Tiago|en_UK
local.rioxx.authorAmoudry, Laurent O|en_UK
local.rioxx.authorSpyrakos, Evangelos|en_UK
local.rioxx.authorMartin, Adrien|en_UK
local.rioxx.authorMedina-Lopez, Encarni|en_UK
local.rioxx.projectProject ID unknown|University of Edinburgh|http://dx.doi.org/10.13039/501100000848en_UK
local.rioxx.freetoreaddate2025-01-31en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2025-01-31|en_UK
local.rioxx.filenamefenvs-4-1426547.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source2296-665Xen_UK
Appears in Collections:Biological and Environmental Sciences Journal Articles

Files in This Item:
File Description SizeFormat 
fenvs-4-1426547.pdfFulltext - Published Version4.26 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.