Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/36826
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSalmi, Pauliinaen_UK
dc.contributor.authorPölönen, Ilkkaen_UK
dc.contributor.authorBeckmann, Daniel Attonen_UK
dc.contributor.authorCalderini, Marco Len_UK
dc.contributor.authorMay, Lindaen_UK
dc.contributor.authorOlszewska, Justynaen_UK
dc.contributor.authorPerozzi, Lauraen_UK
dc.contributor.authorPääkkönen, Sallien_UK
dc.contributor.authorTaipale, Samien_UK
dc.contributor.authorHunter, Peteren_UK
dc.date.accessioned2025-03-11T01:40:53Z-
dc.date.available2025-03-11T01:40:53Z-
dc.date.issued2024-01en_UK
dc.identifier.urihttp://hdl.handle.net/1893/36826-
dc.description.abstractMotivated by the need for rapid and robust monitoring of phytoplankton in inland waters, this article introduces a protocol based on a mobile spectral imager for assessing phytoplankton pigments from water samples. The protocol includes (1) sample concentrating; (2) spectral imaging; and (3) convolutional neural networks (CNNs) to resolve concentrations of chlorophyll a (Chl a), carotenoids, and phycocyanin. The protocol was demonstrated with samples from 20 lakes across Scotland, with special emphasis on Loch Leven where blooms of cyanobacteria are frequent. In parallel, samples were prepared for reference observations of Chl a and carotenoids by high-performance liquid chromatography and of phycocyanin by spectrophotometry. Robustness of the CNNs were investigated by excluding each lake from model trainings one at a time and using the excluded data as independent test data. For Loch Leven, median absolute percentage difference (MAPD) was 15% for Chl a and 36% for carotenoids. MAPD in estimated phycocyanin concentration was high (102%); however, the system was able to indicate the possibility of a cyanobacteria bloom. In the leave-one-out tests with the other lakes, MAPD was 26% for Chl a, 27% for carotenoids, and 75% for phycocyanin. The higher error for phycocyanin was likely due to variation in the data distribution and reference observations. It was concluded that this protocol could support phytoplankton monitoring by using Chl a and carotenoids as proxies for biomass. Greater focus on the distribution and volume of the training data would improve the phycocyanin estimates.en_UK
dc.language.isoenen_UK
dc.publisherWileyen_UK
dc.relationSalmi P, Pölönen I, Beckmann DA, Calderini ML, May L, Olszewska J, Perozzi L, Pääkkönen S, Taipale S & Hunter P (2024) Resolving phytoplankton pigments from spectral images using convolutional neural networks. <i>Limnology and Oceanography: Methods</i>, 22 (1), pp. 1-13. https://doi.org/10.1002/lom3.10588en_UK
dc.rights© 2023 The Authors. Limnology and Oceanography: Methods published by Wiley Periodicals LLC on behalf of Association for the Sciences of Limnology and Oceanography. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.titleResolving phytoplankton pigments from spectral images using convolutional neural networksen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1002/lom3.10588en_UK
dc.citation.jtitleLimnology and Oceanography: Methodsen_UK
dc.citation.issn1541-5856en_UK
dc.citation.volume22en_UK
dc.citation.issue1en_UK
dc.citation.spage1en_UK
dc.citation.epage13en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderEuropean Commission (Horizon 2020)en_UK
dc.contributor.funderNatural Environment Research Councilen_UK
dc.contributor.funderAcademy of Finlanden_UK
dc.author.emailp.d.hunter@stir.ac.uken_UK
dc.citation.date06/11/2023en_UK
dc.contributor.affiliationUniversity of Jyvaskyla, Finlanden_UK
dc.contributor.affiliationUniversity of Jyvaskyla, Finlanden_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.contributor.affiliationUniversity of Jyvaskyla, Finlanden_UK
dc.contributor.affiliationNERC Centre for Ecology and Hydrologyen_UK
dc.contributor.affiliationNERC Centre for Ecology and Hydrologyen_UK
dc.contributor.affiliationUniversity of Jyvaskyla, Finlanden_UK
dc.contributor.affiliationUniversity of Jyvaskyla, Finlanden_UK
dc.contributor.affiliationScotland's International Environment Centreen_UK
dc.identifier.isiWOS:001094739900001en_UK
dc.identifier.scopusid2-s2.0-85176143532en_UK
dc.identifier.wtid2076392en_UK
dc.contributor.orcid0000-0003-3247-2259en_UK
dc.contributor.orcid0000-0001-7269-795Xen_UK
dc.date.accepted2023-10-17en_UK
dcterms.dateAccepted2023-10-17en_UK
dc.date.filedepositdate2025-01-28en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorSalmi, Pauliina|0000-0003-3247-2259en_UK
local.rioxx.authorPölönen, Ilkka|en_UK
local.rioxx.authorBeckmann, Daniel Atton|en_UK
local.rioxx.authorCalderini, Marco L|en_UK
local.rioxx.authorMay, Linda|en_UK
local.rioxx.authorOlszewska, Justyna|en_UK
local.rioxx.authorPerozzi, Laura|en_UK
local.rioxx.authorPääkkönen, Salli|en_UK
local.rioxx.authorTaipale, Sami|en_UK
local.rioxx.authorHunter, Peter|0000-0001-7269-795Xen_UK
local.rioxx.projectProject ID unknown|Natural Environment Research Council|http://dx.doi.org/10.13039/501100000270en_UK
local.rioxx.projectProject ID unknown|Academy of Finland|http://dx.doi.org/10.13039/501100002341en_UK
local.rioxx.projectProject ID unknown|European Commission (Horizon 2020)|en_UK
local.rioxx.freetoreaddate2025-01-28en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2025-01-28|en_UK
local.rioxx.filenameLimnology Ocean Methods - 2023 - Salmi - Resolving phytoplankton pigments from spectral images using convolutional neural.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1541-5856en_UK
Appears in Collections:Biological and Environmental Sciences Journal Articles

Files in This Item:
File Description SizeFormat 
Limnology Ocean Methods - 2023 - Salmi - Resolving phytoplankton pigments from spectral images using convolutional neural.pdfFulltext - Published Version2.38 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.