Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/36836
Full metadata record
DC FieldValueLanguage
dc.contributor.authorO'Hare, Louiseen_UK
dc.contributor.authorHibbard, Paulen_UK
dc.date.accessioned2025-03-11T01:46:22Z-
dc.date.available2025-03-11T01:46:22Z-
dc.date.issued2024-12-26en_UK
dc.identifier.urihttp://hdl.handle.net/1893/36836-
dc.description.abstractSparse coding theories suggest that the visual brain is optimised to encode natural visual stimuli to minimise metabolic cost. It is thought that images that do not have the same statistical properties of natural images are unable to be coded efficiently and result in visual discomfort. Conversely, artworks are thought to be even more efficiently processed compared to natural images and so are aesthetically pleasing. This project investigated visual discomfort in uncomfortable images, natural scenes and artworks using a combination of low-level image statistical analysis, mathematical modelling and EEG measures. Results showed that the model response predicted discomfort judgements. Moreover, low-level image statistics including edge predictability predict discomfort judgements, whereas contrast information predicts the SSVEP responses. In conclusion, this study demonstrates that discomfort judgements for a wide set of images can be influenced by contrast and edge information, and can be predicted by our models of low-level vision, whilst neural responses are more defined by contrast-based metrics, when contrast is allowed to vary.en_UK
dc.language.isoenen_UK
dc.publisherCambridge University Press (CUP)en_UK
dc.relationO'Hare L & Hibbard P (2024) Support for the efficient coding account of visual discomfort. <i>Visual Neuroscience</i>. https://doi.org/10.1017/S0952523824000051en_UK
dc.rights© The Author(s), 2024. Published by Cambridge University Press This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectSSVEPen_UK
dc.subjectedge orientation entropyen_UK
dc.subjectcontrasten_UK
dc.subjectfractal dimensionen_UK
dc.subjectspectral slopeen_UK
dc.titleSupport for the efficient coding account of visual discomforten_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1017/S0952523824000051en_UK
dc.identifier.pmid39721939en_UK
dc.citation.jtitleVisual Neuroscienceen_UK
dc.citation.issn1469-8714en_UK
dc.citation.issn0952-5238en_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.author.emailpaul.hibbard@stir.ac.uken_UK
dc.citation.date26/12/2024en_UK
dc.contributor.affiliationNottingham Trent Universityen_UK
dc.contributor.affiliationPsychologyen_UK
dc.identifier.isiWOS:001382756500001en_UK
dc.identifier.scopusid2-s2.0-85213549286en_UK
dc.identifier.wtid2075177en_UK
dc.date.accepted2024-09-30en_UK
dcterms.dateAccepted2024-09-30en_UK
dc.date.filedepositdate2024-11-27en_UK
rioxxterms.apcpaiden_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorO'Hare, Louise|en_UK
local.rioxx.authorHibbard, Paul|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2025-01-27en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2025-01-27|en_UK
local.rioxx.filenamesupport-for-the-efficient-coding-account-of-visual-discomfort.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1469-8714en_UK
Appears in Collections:Psychology Journal Articles

Files in This Item:
File Description SizeFormat 
support-for-the-efficient-coding-account-of-visual-discomfort.pdfFulltext - Published Version1.15 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.