Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/36955
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWambulwa, Moses C.en_UK
dc.contributor.authorZhu, Guang‐Fuen_UK
dc.contributor.authorLuo, Ya‐Huangen_UK
dc.contributor.authorWu, Zeng‐Yuanen_UK
dc.contributor.authorProvan, Jimen_UK
dc.contributor.authorCadotte, Marc W.en_UK
dc.contributor.authorJump, Alistair S.en_UK
dc.contributor.authorWachira, Francis N.en_UK
dc.contributor.authorGao, Lian‐Mingen_UK
dc.contributor.authorYi, Ting‐Shuangen_UK
dc.contributor.authorCai, Jieen_UK
dc.contributor.authorWang, Hongen_UK
dc.contributor.authorLi, De‐Zhuen_UK
dc.contributor.authorLiu, Jieen_UK
dc.date.accessioned2025-04-02T00:04:14Z-
dc.date.available2025-04-02T00:04:14Z-
dc.date.issued2025-03en_UK
dc.identifier.urihttp://hdl.handle.net/1893/36955-
dc.description.abstractClimate change poses a significant threat to the survival of many species. Although protected areas can slow down biodiversity loss, they often lack systematic planning and do not integrate genetic diversity. Genetic diversity is a key prerequisite for species survival and the ability to tolerate new conditions. Using population genetic and distribution data from 96 plant species in the Third Pole (encompassing the Tibetan Plateau and adjacent mountains), we mapped patterns of genetic diversity, projected climate-driven range dynamics and future genetic erosion, and designed an optimal conservation framework for the region. We identified several patches of high haplotype diversity (HD), with a relatively high number of haplotypes in southeastern Third Pole. Regression models revealed that climate and topography have interacted to shape patterns of genetic diversity, with latitude and precipitation being the best predictors for HD of cpDNA and nrDNA, respectively. Ecological niche modeling predicted an approximate 43 km northwestward and 86 m upward shift in suitable habitats under future climate scenarios, likely leading to a significant loss of up to 13.19% and 15.49% of cpDNA and nrDNA genetic diversity, respectively. Alarmingly, 71.20% of the newly identified conservation priority areas fall outside of the existing protected areas and planned National Park Clusters. Therefore, we recommend expanding the network by 2.02 × 105 km2 (5.91%) in the Third Pole, increasing the total conserved area to 1.36 × 106 km2 (39.93%) to effectively preserve the evolutionary potential of plants. This study represents an innovative attempt to incorporate genetic diversity into biodiversity conservation efforts.en_UK
dc.language.isoenen_UK
dc.publisherWileyen_UK
dc.relationWambulwa MC, Zhu G, Luo Y, Wu Z, Provan J, Cadotte MW, Jump AS, Wachira FN, Gao L, Yi T, Cai J, Wang H, Li D & Liu J (2025) Incorporating Genetic Diversity to Optimize the Plant Conservation Network in the Third Pole. <i>Global Change Biology</i>, 31 (3). https://doi.org/10.1111/gcb.70122en_UK
dc.rightsThis is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided theoriginal work is properly cited and is not used for commercial purposes. © 2025 The Author(s). Global Change Biology published by John Wiley & Sons Ltden_UK
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_UK
dc.subjectconservation networken_UK
dc.subjectecological niche modelingen_UK
dc.subjectgenetic diversityen_UK
dc.subjectgenetic erosionen_UK
dc.subjectNational Park Clusteren_UK
dc.subjectprotected areasen_UK
dc.subjectsystematic conservation planningen_UK
dc.subjectTibetan Plateauen_UK
dc.titleIncorporating Genetic Diversity to Optimize the Plant Conservation Network in the Third Poleen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1111/gcb.70122en_UK
dc.identifier.pmid40110964en_UK
dc.citation.jtitleGlobal Change Biologyen_UK
dc.citation.issn1365-2486en_UK
dc.citation.issn1354-1013en_UK
dc.citation.volume31en_UK
dc.citation.issue3en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.contributor.funderNational Natural Science Foundation of Chinaen_UK
dc.contributor.funderNational Natural Science Foundation of Chinaen_UK
dc.contributor.funderNational Natural Science Foundation of Chinaen_UK
dc.contributor.funderMinistry of Science and Technology of the People's Republic of Chinaen_UK
dc.contributor.funderNational Natural Science Foundation of Chinaen_UK
dc.author.emaila.s.jump@stir.ac.uken_UK
dc.citation.date20/03/2025en_UK
dc.citation.isbn1365-2486en_UK
dc.contributor.affiliationKunming Institute of Botanyen_UK
dc.contributor.affiliationKunming Institute of Botanyen_UK
dc.contributor.affiliationKunming Institute of Botanyen_UK
dc.contributor.affiliationKunming Institute of Botanyen_UK
dc.contributor.affiliationAberystwyth Universityen_UK
dc.contributor.affiliationUniversity of Torontoen_UK
dc.contributor.affiliationNS Management and Supporten_UK
dc.contributor.affiliationKunming Institute of Botanyen_UK
dc.contributor.affiliationKunming Institute of Botanyen_UK
dc.contributor.affiliationKunming Institute of Botanyen_UK
dc.contributor.affiliationKunming Institute of Botanyen_UK
dc.contributor.affiliationKunming Institute of Botanyen_UK
dc.identifier.wtid2112673en_UK
dc.contributor.orcid0000-0002-6373-5915en_UK
dc.contributor.orcid0000-0002-0073-419Xen_UK
dc.contributor.orcid0000-0003-4652-0194en_UK
dc.contributor.orcid0000-0002-2167-6451en_UK
dc.contributor.orcid0000-0002-4990-724Xen_UK
dc.date.accepted2025-02-19en_UK
dcterms.dateAccepted2025-02-19en_UK
dc.date.filedepositdate2025-03-24en_UK
rioxxterms.versionAMen_UK
local.rioxx.authorWambulwa, Moses C.|0000-0002-6373-5915en_UK
local.rioxx.authorZhu, Guang‐Fu|en_UK
local.rioxx.authorLuo, Ya‐Huang|0000-0002-0073-419Xen_UK
local.rioxx.authorWu, Zeng‐Yuan|0000-0003-4652-0194en_UK
local.rioxx.authorProvan, Jim|en_UK
local.rioxx.authorCadotte, Marc W.|en_UK
local.rioxx.authorJump, Alistair S.|0000-0002-2167-6451en_UK
local.rioxx.authorWachira, Francis N.|en_UK
local.rioxx.authorGao, Lian‐Ming|en_UK
local.rioxx.authorYi, Ting‐Shuang|en_UK
local.rioxx.authorCai, Jie|en_UK
local.rioxx.authorWang, Hong|en_UK
local.rioxx.authorLi, De‐Zhu|0000-0002-4990-724Xen_UK
local.rioxx.authorLiu, Jie|en_UK
local.rioxx.projectProject ID unknown|National Natural Science Foundation of China|en_UK
local.rioxx.projectProject ID unknown|Ministry of Science and Technology of the People's Republic of China|en_UK
local.rioxx.freetoreaddate2025-03-26en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by-nc-nd/4.0/|2025-03-26|en_UK
local.rioxx.filenameIncorporating Genetic Diversity to Optimize the Plant Conservation Network in the Third Pole.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1365-2486en_UK
Appears in Collections:Biological and Environmental Sciences Journal Articles

Files in This Item:
File Description SizeFormat 
Incorporating Genetic Diversity to Optimize the Plant Conservation Network in the Third Pole.pdfFulltext - Published Version3 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.