Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/37081
Full metadata record
DC FieldValueLanguage
dc.contributor.authorIsufaj, Albien_UK
dc.contributor.authorDe Castro Martins, Caioen_UK
dc.contributor.authorCavazza, Marcen_UK
dc.contributor.authorPrendinger, Helmuten_UK
dc.date.accessioned2025-05-24T00:00:49Z-
dc.date.available2025-05-24T00:00:49Z-
dc.date.issued2025-06en_UK
dc.identifier.urihttp://hdl.handle.net/1893/37081-
dc.description.abstractThis paper explores the applicability of Convergent Cross Mapping (CCM) and its extension, Time Delay Convergent Cross Mapping (TDCCM), to assess the causal relationships between Bitcoin, the S&P 500 index, and gold. Unlike conventional causality analysis methods, such as Granger causality or transfer entropy, CCM accounts for non-separable, weakly connected dynamic systems, and TDCCM explicitly incorporates time lags during cross-mapping, enabling the detection of complex causal relationships in systems with shared nonlinear behavior. This makes it particularly suitable for financial time series that often exhibit chaotic and nonlinear dynamics, particularly during periods of market instability. We integrate TDCCM with simplex projection and sequential locally weighted global linear map (S-map) algorithms, applying a sliding window approach to identify short time intervals characterized by high levels of nonlinearity and chaoticity. Using this approach, we uncovered a strong causal relationship between Bitcoin and the S&P 500 index during the onset of the COVID-19 pandemic. Our analysis reveals a bidirectional causal relationship between Bitcoin and the S&P 500 index, highlighting their interconnectedness during periods of heightened economic uncertainty. Furthermore, we find a unidirectional causal influence of Bitcoin on gold, reflecting Bitcoin’s evolving role as a macroeconomic indicator and its growing relevance as an alternative store of value. These findings provide insight into the dynamics between cryptocurrencies and traditional financial markets, particularly during periods of global economic disruption.en_UK
dc.language.isoenen_UK
dc.publisherElsevier BVen_UK
dc.relationIsufaj A, De Castro Martins C, Cavazza M & Prendinger H (2025) Applying time delay convergent cross mapping to Bitcoin time series. <i>Expert Systems with Applications</i>, 277, p. 127125. https://doi.org/10.1016/j.eswa.2025.127125en_UK
dc.rights© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectCausalityen_UK
dc.subjectTime-delay convergent cross-mappingen_UK
dc.subjectBitcoinen_UK
dc.subjectTime seriesen_UK
dc.titleApplying time delay convergent cross mapping to Bitcoin time seriesen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1016/j.eswa.2025.127125en_UK
dc.citation.jtitleExpert Systems with Applicationsen_UK
dc.citation.issn0957-4174en_UK
dc.citation.volume277en_UK
dc.citation.spage127125en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.author.emailmarc.cavazza@stir.ac.uken_UK
dc.citation.date18/03/2025en_UK
dc.citation.isbn1873-6793en_UK
dc.contributor.affiliationGraduate Institute of International and Development Studies (The Graduate Institute Geneva)en_UK
dc.contributor.affiliationUniversity of Greenwichen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationGraduate Institute of International and Development Studies (The Graduate Institute Geneva)en_UK
dc.identifier.isiwww.webofscience.com/wos/woscc/full-record/WOS:001450165000001en_UK
dc.identifier.scopusid2-s2.0-105000110499&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.1016%2Fj.eswa.2025.127125%29&sessionSearchId=9f3d51e0b1ab97da028769f9f532428cen_UK
dc.identifier.wtid2126378en_UK
dc.contributor.orcid0009-0005-1606-2665en_UK
dc.contributor.orcid0000-0003-4654-9835en_UK
dc.date.accepted2025-03-02en_UK
dcterms.dateAccepted2025-03-02en_UK
dc.date.filedepositdate2025-05-09en_UK
dc.subject.tagCOVID-19en_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorIsufaj, Albi|0009-0005-1606-2665en_UK
local.rioxx.authorDe Castro Martins, Caio|en_UK
local.rioxx.authorCavazza, Marc|en_UK
local.rioxx.authorPrendinger, Helmut|0000-0003-4654-9835en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2025-05-22en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2025-05-22|en_UK
local.rioxx.filenameIsufaj-et-al-2025.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source0957-4174en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
Isufaj-et-al-2025.pdfFulltext - Published Version1.95 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.